Minimum!

Algebra Level 4

Let x 1 x_1 and x 2 x_2 be the roots of the equation x 2 + p x 1 2 p 2 = 0 x^2+p x -\dfrac{1}{2 p^2}=0 , where x x is unknown and p p is a real parameter.Then find the minimum value of x 1 4 + x 2 4 {x_1}^4 +{x_2}^4 .

Give your answer to 3 decimal places.


For more problems try my set


The answer is 3.414.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Apr 18, 2016

x 1 + x 2 = p , x 1 x 2 = 1 2 p 2 x_1+x_2=-p, x_1x_2=\dfrac{-1}{2p^2} x 1 4 + x 2 4 = ( ( x 1 + x 2 ) 2 2 x 1 x 2 ) 2 2 x 1 2 x 2 2 = p 4 + 1 2 p 4 Applying AM-GM + 2 2 + 2 \begin{aligned}x_1^4+x_2^4&=((x_1+x_2)^2-2x_1x_2)^2-2x_1^2x_2^2\\&=\underbrace{p^4+\dfrac{1}{2p^4}}_{\color{#D61F06}{\text{Applying AM-GM}}}+2\\&\geq \sqrt 2+2\end{aligned} Equality occurs when p = 1 2 8 p=\dfrac{1}{\sqrt[8]{2}} .

Chew-Seong Cheong
Apr 18, 2016

By Vieta's formulas, we have: { x 1 + x 2 = p x 1 x 2 = 1 2 p 2 \begin{cases} x_1 + x_2 = - p \\ x_1 x_2 = - \dfrac{1}{2p^2} \end{cases}

Then we have:

x 1 2 + x 2 2 = ( x 1 + x 2 ) 2 2 x 1 x 2 = ( p ) 2 2 ( 1 2 p 2 ) = p 2 + 1 p 2 \begin{aligned} x_1^2+x_2^2 & = (x_1+x_2)^2 - 2x_1x_2 \\ & = (-p)^2 - 2 \left(-\frac{1}{2p^2} \right) \\ & = p^2 + \frac{1}{p^2} \end{aligned}

And that:

x 1 4 + x 2 4 = ( x 1 2 + x 2 2 ) 2 2 x 1 2 x 2 2 = ( p 2 + 1 p 2 ) 2 2 ( 1 2 p 2 ) 2 = p 4 + 2 + 1 p 4 1 2 p 4 = p 4 + 1 2 p 4 + 2 By AM-GM inequality : p 4 + 1 2 p 4 2 p 4 2 p 4 = 2 2 + 2 3.414 \begin{aligned} x_1^4+x_2^4 & = (x_1^2+x_2^2)^2 - 2x_1^2x_2^2 \\ & = \left(p^2 + \frac{1}{p^2} \right)^2 - 2 \left(-\frac{1}{2p^2} \right)^2 \\ & = p^4 + 2 + \frac{1}{p^4} - \frac{1}{2p^4} \\ & = \color{#3D99F6}{p^4 + \frac{1}{2p^4}} + 2 \quad \quad \quad \quad \quad \quad \quad \quad \small \color{#3D99F6}{\text{By AM-GM inequality}: p^4 + \frac{1}{2p^4} \ge 2 \sqrt{\frac{p^4}{2p^4}} = \sqrt{2}} \\ & \ge 2 + \sqrt{2} \, \approx \boxed{3.414} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...