Min+Max

Algebra Level 5

Let x , y , z R x,y,z \in \mathbb{R} such that x y z π 12 x \geq y \geq z \geq \dfrac{\pi}{12} and satisfying the equation x + y + z = π 2 x+y+z=\dfrac{\pi}{2} . P = cos x sin y cos z \large P=\cos x\sin y \cos z If the minimum and maximum values of the above product are m m and M M respectively, then if the value of m + M m+M is of the form a + b c \dfrac{a+\sqrt{b}}{c} , where a a , b b , and c c are positive integers and b b is square free, find a + b + c a+b+c .


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Oct 8, 2019

Simple algebra shows that, given the constraint that x + y + z = 1 2 π x + y + z = \tfrac12\pi , we have P ( x , y , z ) = cos x sin y cos z = 1 2 ( cos 2 x cos 2 y + cos 2 z ) P(x,y,z) = \cos x\,\sin y \, \cos z \; = \; \tfrac12\big(\cos^2x - \cos^2y + \cos^2z\big) and hence, subject to the constraints x + y + z = 1 2 π x + y + z = \tfrac12\pi and x y z 1 12 π x \ge y \ge z \ge \tfrac{1}{12}\pi , P ( x , y , z ) P ( 1 2 ( x + y ) , 1 2 ( x + y ) , z ) = 1 2 cos 2 z 1 2 cos 2 1 12 π = 1 4 ( cos 1 6 π + 1 ) = 3 + 2 8 P(x,y,z) \; \le \; P\big(\tfrac12(x+y),\tfrac12(x+y),z\big) \; = \; \tfrac12\cos^2z \; \le \; \tfrac12\cos^2\tfrac{1}{12}\pi \; = \; \tfrac14(\cos\tfrac16\pi + 1) = \frac{\sqrt{3}+2}{8} while P ( x , y , z ) P ( x , 1 2 ( y + z ) , 1 2 ( y + z ) ) = P ( x , 1 4 π 1 2 x , 1 4 π 1 2 x ) = 1 2 cos 2 x 1 2 cos 2 1 3 π = 1 8 P(x,y,z) \; \ge \; P\big(x,\tfrac12(y+z),\tfrac12(y+z)\big) \; = \; P(x,\tfrac14\pi - \tfrac12x,\tfrac14\pi - \tfrac12x\big) \; = \; \tfrac12\cos^2x \; \ge \; \tfrac12\cos^2\tfrac13\pi \; = \; \frac18 so that M + m = ( 3 + 2 ) + 1 8 = 3 + 3 8 M + m \; = \; \frac{(\sqrt{3} +2) + 1}{8} \; = \; \frac{\sqrt{3}+3}{8} making the answer 8 + 3 + 3 = 14 8+3+3=\boxed{14} .

Very nice answer!

Vilakshan Gupta - 1 year, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...