max min min max \max_{\min}-\min_{\max}

Algebra Level pending

Given two functions

{ f ( x ) = x 2 2 ( a + 2 ) x + a 2 g ( x ) = x 2 + 2 ( a 2 ) x a 2 + 8 \begin{cases} f(x)=x^2-2(a+2)x+a^2 \\ g(x)=-x^2+2(a-2)x-a^2+8\end{cases}

Let H 1 ( x ) = max { f ( x ) , g ( x ) } H_1(x)=\max\{f(x),g(x)\} , where max { f ( x ) , g ( x ) } \max\{f(x),g(x)\} denote the bigger value of f ( x ) , g ( x ) f(x),g(x) .

H 2 ( x ) = min { f ( x ) , g ( x ) } H_2(x)=\min\{f(x),g(x)\} , where min { f ( x ) , g ( x ) } \min\{f(x),g(x)\} denote the smaller value of f ( x ) , g ( x ) f(x),g(x) .

Then H 1 ( x ) H_1(x) has the minimum value A A and H 2 ( x ) H_2(x) has the maximum value B B .

For all a R a \in \mathbb R , find the value of A B A-B .

16 -16 a 2 + 2 a 16 a^2+2a-16 16 16 a 2 2 a 16 a^2-2a-16

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We have f ( x ) = x 2 2 ( a + 2 ) x + a 2 4 ( a + 1 ) f(x)=x^2-2(a+2)x+a^2\geq -4(a+1) and g ( x ) = x 2 + 2 ( a 2 ) x a 2 + 8 4 ( 3 a ) g(x)=-x^2+2(a-2)x-a^2+8\leq 4(3-a) . The function f ( x ) f(x) doesn't possess any local maximum and the function g ( x ) g(x) doesn't possess any local minimum. So A = 4 ( a + 1 ) , B = 4 ( 3 a ) A=-4(a+1), B=4(3-a) , and A B = 4 ( a + 1 + 3 a ) = 16 A-B=-4(a+1+3-a)=\boxed {-16}

No, I think you interpreted this problem incorrect. Actually what H1(x) means is for any x, compute f(x) and g(x), and compare f(x),g(x), and output the bigger value.

Alice Smith - 1 year, 3 months ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...