Minus One Makes A Difference

( 71 1 1 ) ( 71 2 1 ) ( 71 3 1 ) ( 71 42 1 ) ( 71 43 1 ) \left( \frac { 71 }{ 1 } -1 \right) \left( \frac { 71 }{ 2 } -1 \right) \left( \frac { 71 }{ 3 } -1 \right) \cdots \left( \frac { 71 }{ 42 } -1 \right) \left( \frac { 71 }{ 43 } -1 \right)

Which of the following is equal to the above value?

Notation : ( M N ) \binom MN denotes the binomial coefficient , ( M N ) = M ! N ! ( M N ) ! \binom MN = \frac{M!}{N!(M-N)!} .

( 71 43 ) \left( \begin{matrix} 71 \\ 43 \end{matrix} \right) 44 71 ( 71 44 ) \frac { 44 }{ 71 } \left( \begin{matrix} 71 \\ 44 \end{matrix} \right) 71 43 43 ! \frac { { 71 }^{ 43 } }{ 43! } ( 71 44 ) \left( \begin{matrix} 71 \\ 44 \end{matrix} \right) 44 71 ( 71 43 ) \frac { 44 }{ 71 } \left( \begin{matrix} 71 \\ 43 \end{matrix} \right)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Calvin Lin Staff
Apr 19, 2016

This can be done directly by factoring out the denominator. We have:

71 1 1 × 71 2 2 × 71 3 3 × = 70 × 69 × × ( 71 43 ) 1 × 2 × × 43 \frac{ 71 - 1}{1} \times \frac{71-2} {2} \times \frac{71-3}{3} \times \ldots = \frac{ 70 \times 69 \times \ldots \times (71-43) } { 1 \times 2 \times \ldots \times 43 }

This is immediately recognizable as ( 70 43 ) 70 \choose 43 .

Unfortunately, it is not yet any of the options. We consider what else it could be expressed as. Using ( n m ) = n m ( n 1 m 1 ) { n \choose m } = \frac{n}{m} { n-1 \choose m-1 } , we see that with n = 71 , m = 44 n=71, m = 44 , the answer is 44 71 ( 71 44 ) \frac{44}{71} { 71 \choose 44 } .

Peter Macgregor
Apr 16, 2016

Let us define

P n = ( 71 1 1 ) ( 71 2 1 ) ( 71 n 1 ) P_n=\left(\frac{71}{1}-1\right)\left(\frac{71}{2}-1\right)\cdots\left(\frac{71}{n}-1\right) where n 70 n\leq 70

We will use mathematical induction to prove that

P n = n + 1 71 ( 71 n + 1 ) equation 1 P_n=\frac{n+1}{71}\begin{pmatrix}71\\n+1\end{pmatrix}\dots\text{equation 1}

Then the problem is easily completed since P 43 = 44 71 ( 71 44 ) P_{43}=\boxed{\frac{44}{71}\begin{pmatrix}71\\44\end{pmatrix}}

Proof

Equation 1 is easily checked for n = 1 n=1 . Now assume that it holds for P k P_k . From the definition of P n P_n we have

P k + 1 = P k ( 71 k + 1 1 ) = k + 1 71 ( 71 k + 1 ) 70 k k + 1 = 70 k 71 71 ! ( k + 1 ) ! ( 70 k ) ! P_{k+1}=P_k\left(\frac{71}{k+1}-1\right)=\frac{k+1}{71}\begin{pmatrix}71\\{k+1}\end{pmatrix}\frac{70-k}{k+1}=\frac{70-k}{71}\frac{71!}{(k+1)!(70-k)!}

Multiplying the numerator and denominator by ( k + 2 ) (k+2) and doing some very careful cancelling gives

P k + 1 = k + 2 71 71 ! ( k + 2 ) ! ( 71 ( k + 2 ) ! = k + 2 71 ( 71 k + 2 ) P_{k+1}=\frac{k+2}{71}\frac{71!}{(k+2)!(71-(k+2)!}=\frac{k+2}{71}\begin{pmatrix}71\\k+2\end{pmatrix}

We have shown that he formula holds for n = 1 n=1 and that if it holds for n = k n=k then it holds for n = k + 1 n=k+1 . Invoking the principle of mathematical induction then completes the proof.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...