Missing x x

Algebra Level 1

6 4 4 x = 51 2 3 x + 8 \large 64^{4x} = 512^{3x+8}

FInd x x .


The answer is -24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

6 4 4 x = 51 2 3 x + 8 \large{64^{4x}=512^{3x+8}} 2 6 ( 4 x ) = 2 9 ( 3 x + 8 ) \large{2^{6(4x)}=2^{9(3x+8)}} 6 ( 4 x ) = 9 ( 3 x + 8 ) \large{6(4x)=9(3x+8)} 24 x = 27 x + 72 \large{24x=27x+72} 72 = 3 x \large{-72=3x} x = 24 \boxed{\color{#D61F06}\large{x=-24}}

Chew-Seong Cheong
Feb 11, 2018

6 4 4 x = 51 2 3 x + 8 ( 2 6 ) 4 x = ( 2 9 ) 3 x + 8 2 6 ( 4 x ) = 2 9 ( 3 x + 8 ) 6 ( 4 x ) = 9 ( 3 x + 8 ) 2 ( 4 x ) = 3 ( 3 x + 8 ) 8 x = 9 x + 24 x = 24 \large \begin{aligned} 64^{4x} & = 512^{3x+8} \\ \left(2^6\right)^{4x} & = \left(2^9\right)^{3x+8} \\ 2^{6(4x)} & = 2^{9(3x+8)} \\ \implies 6(4x) & = 9(3x+8) \\ 2(4x) & = 3(3x+8) \\ 8x & = 9x + 24 \\ \implies x & = \boxed{-24}\end{aligned}

Munem Shahriar
Feb 9, 2018

6 4 4 x = 51 2 3 x + 8 ( 8 2 ) 4 x = ( 8 3 ) 3 x + 8 8 8 x = 8 9 x + 24 [ ( a n ) m = a n m ] 8 x = 9 x + 24 8 x 9 x = 24 x = 24 x = 24 1 = 24 . \begin{aligned} 64^{4x} & = 512^{3x+8} \\(8^2)^{4x} & = (8^3)^{3x+8} \\8^{8x} & = 8^{9x+24} ~~~~~~~~~~~~~~~~ [(a^n)^m = a^{nm}] \\8x & = 9x + 24 \\8x-9x & = 24 \\-x & = 24 \\ \implies x & = \dfrac{24}{-1} = \boxed{-24}.\\ \end{aligned}

Blan Morrison
Feb 9, 2018

Relevant wiki: Rules of Exponents

First, we can factor out 512 to get: 6 4 4 x = 6 4 3 x + 8 × 8 3 x + 8 64^{4x}=64^{3x+8}\times8^{3x+8} If we divide both sides by 6 4 3 x + 8 64^{3x+8} , we get: 6 4 x 8 = 8 3 x + 8 64^{x-8}=8^{3x+8} If we realize that 64 = 8 2 64=8^2 , then we can distribute the 2 to the x 8 x-8 : 8 2 x 16 = 8 3 x + 8 8^{2x-16}=8^{3x+8} Using logic, we can get rid of the 8 and solve for the equation: 2 x 16 = 3 x + 8 2x-16=3x+8 When we do that, we get the answer of 24 \boxed{-24} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...