Mistake made Man

Find the second last digit of S S :

S = 2 2 + 4 2 + 8 2 + 1 6 2 + + 12 8 2 + 25 6 2 \large S= 2^2+4^2+8^2+16^2+\cdots+128^2+256^2


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Feb 19, 2019

S = 2 2 + 4 2 + 8 2 + 1 6 2 + 3 2 2 + 6 4 2 + 12 8 2 + 25 6 2 (mod 100) = 4 1 + 4 2 + 4 3 + 4 4 + 4 5 + 4 6 + 4 7 + 4 8 (mod 100) = ( 4 + 4 2 ) + 4 2 ( 4 + 4 2 ) + 4 4 ( 4 + 4 2 ) + 4 6 ( 4 + 4 2 ) (mod 100) = 20 ( 1 + 4 2 + 4 4 + 4 6 ) (mod 100) = 20 ( 1 + 16 + 1 6 2 + 1 6 3 ) (mod 100) Power of number ends with 6 always ends with 6 = 20 ( 1 + 6 + 6 + 6 ) (mod 100) = 20 + 20 + 20 + 20 (mod 100) = 80 (mod 100) \begin{aligned} S & = 2^2 + 4^2 + 8^2 + 16^2 + 32^2 + 64^2 + 128^2 + 256^2 \text{ (mod 100)} \\ & = 4^1 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6 + 4^7 + 4^8 \text{ (mod 100)} \\ & = (4+4^2) + 4^2(4+4^2) + 4^4(4+4^2) + 4^6(4+4^2) \text{ (mod 100)} \\ & = 20(1+4^2 + 4^4 + 4^6) \text{ (mod 100)} \\ & = 20(1+{\color{#3D99F6}16} + {\color{#3D99F6}16^2} + {\color{#3D99F6}16^3}) \text{ (mod 100)} \quad \quad \small \color{#3D99F6} \text{Power of number ends with 6 always ends with 6} \\ & = 20(1+{\color{#3D99F6}6} + {\color{#3D99F6}6} + {\color{#3D99F6}6}) \text{ (mod 100)} \\ & = 20 + 20 + 20 + 20 \text{ (mod 100)} \\ & = 80 \text{ (mod 100)} \end{aligned}

Therefore the second last digit of S S is 8 \boxed 8 .

the sequence ( 2 k ) 2 \big(2^{k}\big)^2 , for k = 1 , 2 , k=1,2,\dots , modulo 25 25 , has got a repetitive pattern. 4 , 16 , 14 , 6 , 1 , 4 , 16 , 14 , 6 , 1 , 4 4, 16, 14, 6, -1, -4, -16, -14, -6, 1, 4 , with period 10 10 .

Therefore, the summation, modulo 25 25 , would mostly cancel out and we get

2 2 + + 25 6 2 5 m o d 25 2^2+\dots + 256^2 \equiv 5 \ mod \ 25

Also, not hard to see

2 2 + + 25 6 2 0 m o d 4 2^2+\dots + 256^2 \equiv 0 \ mod \ 4

Chinese remainder theorem can be used then

2 2 + + 25 6 2 80 m o d 100 2^2+\dots + 256^2 \equiv 80 \ mod \ 100

Shuvodip Das
Feb 19, 2019

https://drive.google.com/file/d/1Pg8csf_Nv3IPEj0KSYIESqr-0vluzpuO/view?usp=drivesdk

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...