Inspired from Mistakes Give Rise To Problems...

Algebra Level 5

In maths , there exists the following property

x 2 + x 2 = x 2 + x 2 \left\lfloor \left\lfloor \frac { x }{ 2 } \right\rfloor +\left\lfloor { x }^{ 2 } \right\rfloor \right\rfloor =\left\lfloor \frac { x }{ 2 } \right\rfloor +\left\lfloor { x }^{ 2 } \right\rfloor

but if you do

{ { x 2 } + { x 2 } } = { x 2 } + { x 2 } \left\{ \left\{ \frac { x }{ 2 } \right\} +\left\{ { x }^{ 2 } \right\} \right\} =\left\{ \frac { x }{ 2 } \right\} +\left\{ { x }^{ 2 } \right\}

then this is a big Mistake!!!

but the above expression is true for some set k where k contains all possible values of x from -2 <x<2 and sum of end points of all intervals of k can be expressed as s

Find 100 { s } \left\lfloor 100\left\{ s \right\} \right\rfloor

Details and assumptions

1.{x} is fractional part of x, which we will define as x x x - \lfloor x \rfloor , even for negative numbers.

2. \left\lfloor \quad \right\rfloor is greatest integer less than or equal to x.

3.For example if your answer is

k = [ 3 2 , 1 ) ( 2 , 2 ) = \left[ -\frac { 3 }{ 2 } ,-1 \right) \cup \left( \sqrt { 2 } ,2 \right)

then s = 3 2 1 + 2 + 2 -\frac { 3 }{ 2 } -1+\sqrt { 2 } +2

4.Consider both cases whethere end points are open ( ) or closed [ ]

5.This is my second problem ever

6.This problem is inspired from the set Mistakes Give Rise to Problems


The answer is 76.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ayush Garg
Aug 2, 2014

Aditya Raut I`ve not added the problem to your set.If you like the problem, then feel free to add it to your set.

I`m just posting a brief solution (not explaining anything in detail)

Note that above equality will hold if RHS <1

So, we equate it to 1 to get

x = 17 1 4 , 33 1 4 , 3 2 , 65 1 4 , 1 2 , 17 1 4 , 33 1 4 x\quad =\quad \frac { \sqrt { 17 } -1 }{ 4 } ,\frac { \sqrt { 33 } -1 }{ 4 } ,\frac { 3 }{ 2 } ,\frac { \sqrt { 65 } -1 }{ 4 } ,-\frac { 1 }{ 2 } ,\frac { -\sqrt { 17 } -1 }{ 4 } ,\frac { -\sqrt { 33 } -1 }{ 4 }

Note that at x = 17 1 4 x\quad =\quad \frac { \sqrt { 17 } -1 }{ 4 } , RHS=1 and at x=1,RHS = 1 2 < 1 \frac { 1 }{ 2 } <1 ,

Therefore, when x 2 { x }^{ 2 } =0, an inteval will either start or end (except for x=0)

so we get x = 1 , 2 , 3 , 2 , 1 , 2 , 3 , x\quad =\quad 1,\sqrt { 2 } ,\sqrt { 3 } ,-2,-1,-\sqrt { 2 } ,-\sqrt { 3 } ,

Adding them we get

s = 17 1 4 + 33 1 4 + 3 2 + 65 1 4 1 2 + 17 1 4 + 33 1 4 + 1 + 2 + 3 2 1 2 3 s\quad =\quad \frac { \sqrt { 17 } -1 }{ 4 } +\frac { \sqrt { 33 } -1 }{ 4 } +\frac { 3 }{ 2 } +\frac { \sqrt { 65 } -1 }{ 4 } -\frac { 1 }{ 2 } +\frac { -\sqrt { 17 } -1 }{ 4 } +\frac { -\sqrt { 33 } -1 }{ 4 } +1+\sqrt { 2 } +\sqrt { 3 } -2\quad -1\quad -\sqrt { 2 } \quad -\sqrt { 3 }

s= 65 9 4 \frac { \sqrt { 65 } -9 }{ 4 } = -0.2344....

{s} = 0.765......

100{s} = 76.5.......

100 { s } \left\lfloor 100\left\{ s \right\} \right\rfloor = 76

I`m just posting a brief solution (not explaining anything in detail)

Note that above equality will hold if RHS <1

So, we equate it to 1 to get

x = 17 1 4 , 33 1 4 , 3 2 , 65 1 4 , 1 2 , 17 1 4 , 33 1 4 x\quad =\quad \frac { \sqrt { 17 } -1 }{ 4 } ,\frac { \sqrt { 33 } -1 }{ 4 } ,\frac { 3 }{ 2 } ,\frac { \sqrt { 65 } -1 }{ 4 } ,-\frac { 1 }{ 2 } ,\frac { -\sqrt { 17 } -1 }{ 4 } ,\frac { -\sqrt { 33 } -1 }{ 4 }

Note that at x = 17 1 4 x\quad =\quad \frac { \sqrt { 17 } -1 }{ 4 } , RHS=1 and at x=1,RHS = 1 2 < 1 \frac { 1 }{ 2 } <1 ,

Therefore, when x 2 { x }^{ 2 } =0, an inteval will either start or end (except for x=0)

so we get x = 1 , 2 , 3 , 2 , 1 , 2 , 3 , x\quad =\quad 1,\sqrt { 2 } ,\sqrt { 3 } ,-2,-1,-\sqrt { 2 } ,-\sqrt { 3 } ,

Adding them we get

s = 17 1 4 + 33 1 4 + 3 2 + 65 1 4 1 2 + 17 1 4 + 33 1 4 + 1 + 2 + 3 2 1 2 3 s\quad =\quad \frac { \sqrt { 17 } -1 }{ 4 } +\frac { \sqrt { 33 } -1 }{ 4 } +\frac { 3 }{ 2 } +\frac { \sqrt { 65 } -1 }{ 4 } -\frac { 1 }{ 2 } +\frac { -\sqrt { 17 } -1 }{ 4 } +\frac { -\sqrt { 33 } -1 }{ 4 } +1+\sqrt { 2 } +\sqrt { 3 } -2\quad -1\quad -\sqrt { 2 } \quad -\sqrt { 3 }

s= 65 9 4 \frac { \sqrt { 65 } -9 }{ 4 } = -0.2344....

{s} = 0.765......

100{s} = 76.5.......

100 { s } \left\lfloor 100\left\{ s \right\} \right\rfloor = 76

Ayush Garg - 6 years, 10 months ago

the fractional part of a negative number has two possible values , that is, no unique universal definition, according to wikipedia. there is no clue in the question that tell us what definition we should use ...

Hasan Kassim - 6 years, 10 months ago

For -tive x, it is always true. When the expression on the right is less than 1, the equation is true. So the limit when it is just false is x^2+x/2 - 1 = 0. this gives x=.78.-->{s}=.78.

Niranjan Khanderia - 6 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...