Mistakes give rise to problems.

Calculus Level 4

1 3 + 2 9 + 3 27 + 4 81 + 5 729 + 8 2187 + 7 6561 + \frac { 1 }{ 3 } +\frac { 2 }{ 9 } +\frac { 3 }{ 27 } +\frac { 4 }{ 81 } +\frac { 5 }{ 729 } + \frac { 8 } { 2187} + \frac{ 7}{ 6561} + \ldots

i.e. Evaluate n = 1 ( ( 1 3 ) n + ( 2 9 ) n ) = a b \sum_{n=1}^{\infty} \left( \left(\dfrac{1}{3}\right)^n + \left(\dfrac{2}{9}\right)^n \right) = \dfrac {a}{b}

If a , b a,b are co-prime integers, calculate a b ab .


Inspiration


The answer is 154.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mehul Arora
Feb 17, 2016

We observe that the series is two interwoven GP's.

1 3 + 2 9 + 3 27 + 4 81 + 5 135 + 8 729 = a b \dfrac {1}{3}+ \dfrac {2}{9}+\dfrac {3}{27}+ \dfrac {4}{81}+ \dfrac {5}{135}+ \dfrac {8}{729} \cdots= \dfrac {a}{b} =

1 3 + 2 9 + 1 9 + 4 81 + 1 27 + 8 729 = a b \color{#D61F06}{\dfrac {1}{3}}+ \color{#007fff}{\dfrac {2}{9}}+ \color{#D61F06}{\dfrac {1}{9}}+ \color{#007fff}{\dfrac {4}{81}}+ \color{#D61F06}{\dfrac {1}{27}}+ \color{#007fff}{\dfrac {8}{729}} \cdots= \dfrac {a}{b}

= 1 3 1 1 3 + 2 9 1 2 9 = 1 2 + 2 7 = 11 14 = \dfrac {\dfrac{1}{3}}{1- \dfrac {1}{3}} + \dfrac {\dfrac {2}{9}}{1- \dfrac {2}{9}}= \dfrac {1}{2}+ \dfrac {2}{7}= \dfrac {11}{14}

a b = 154 \huge {ab=154}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...