Mixed Trig.

Geometry Level 3

If sin θ = x cos ϕ \sin\theta = x\cos\phi and cos θ = y sin ϕ \cos\theta = y\sin\phi .

What is the value of cos 2 ϕ = ? \cos^2\phi= ?

\quad A. x y 2 x 2 y 2 \quad \dfrac{x- y^2}{x^2-y^2}

\quad B. 1 y 2 x 2 y 2 \quad \dfrac{1-y^2}{x^2-y^2}

\quad C. 1 y 2 x 2 + y 2 \quad \dfrac{1-y^2}{x^2+y^2}

\quad D. 1 + y 2 x 2 + y 2 \quad \dfrac{1+y^2}{x^2+y^2}

\quad E. ( 1 + y 2 ) y 2 x 2 y 2 \quad \dfrac{(1+y^2)y^2}{x^2-y^2}

E B C D A

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

{ sin θ = x cos ϕ sin 2 θ = x 2 cos 2 ϕ . . . ( 1 ) cos θ = y sin ϕ cos 2 θ = y 2 sin 2 ϕ . . . ( 2 ) \begin{cases} \sin \theta = x \cos \phi & \implies \sin^2 \theta = x^2 \cos^2 \phi & ...(1) \\ \cos \theta = y \sin \phi & \implies \cos^2 \theta = y^2 \sin^2 \phi & ...(2) \end{cases}

From ( 1 ) + ( 2 ) (1)+(2) :

sin 2 θ + cos 2 θ = x 2 cos 2 ϕ + y 2 sin 2 ϕ Note that sin 2 θ + cos 2 θ = 1 x 2 cos 2 ϕ + y 2 sin 2 ϕ = 1 x 2 cos 2 ϕ + y 2 ( 1 cos 2 ϕ ) = 1 x 2 cos 2 ϕ y 2 cos 2 ϕ = 1 y 2 cos 2 ϕ = 1 y 2 x 2 y 2 \begin{aligned} \color{#3D99F6} \sin^2 \theta + \cos^2 \theta & = x^2 \cos^2 \phi + y^2 \sin^2 \phi & \small \color{#3D99F6} \text{Note that } \sin^2 \theta + \cos^2 \theta = 1 \\ \implies x^2 \cos^2 \phi + y^2 \sin^2 \phi & = \color{#3D99F6} 1 \\ x^2 \cos^2 \phi + y^2 \left(1-\cos^2 \phi \right) & = 1 \\ x^2 \cos^2 \phi - y^2\cos^2 \phi & = 1-y^2 \\ \implies \cos^2 \phi & = \boxed{\dfrac {1-y^2}{x^2-y^2}} \end{aligned}

Thank you for the nice solution.

Hana Wehbi - 3 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...