Mixture Again

Algebra Level 4

If C i C_{i} denotes the coefficient of x i x^{i} in ( 1 + x ) n (1+x)^{n} then, 0 i , j n C i 2 C j 2 = 4900 \displaystyle{\sum_{0 \leq i,j \leq n}C_{i}^2C_{j}^2=4900}

Let L i j k = i a + j b + k ( a × b ) \vec{L_{ijk}}=i\vec{a}+j\vec{b}+k(\vec{a} \times \vec{b}) where a \vec{a} and b \vec{b} are two unit vectors perpendicular to each other and i , j , k i,j,k are nonzero constants.

Find the value of ( 1 i , j , k n L i j k 2 ) \displaystyle({\sum_{1\leq i,j,k \leq n} |\vec{L_{ijk}}|^{2}})


The answer is 1440.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Shauryam Akhoury
May 14, 2019

0 i , j n C i 2 C j 2 \sum _{ 0\le i,j\le n }^{ }{ { C }_{ i }^{ 2 }{ C }_{ j }^{ 2 } } = ( i = 0 n C i 2 ) ( j = 0 n C j 2 ) =(\sum _{ i=0 }^{ n }{ { C }_{ i }^{ 2 }) } (\sum _{ j=0 }^{ n }{ { C }_{ j }^{ 2 }) }

Since i i and j j are independent of each other

We know, ( i = 0 n C i 2 ) = ( 2 n n ) (\sum _{ i=0 }^{ n }{ { C }_{ i }^{ 2 }) } =\begin{pmatrix} 2n \\ n \end{pmatrix}

( 2 n n ) 2 = 4900 { \begin{pmatrix} 2n \\ n \end{pmatrix} }^{ 2 }=4900

( 2 n n ) = 70 { \begin{pmatrix} 2n \\ n \end{pmatrix} }=70

n = 4 n=4

Magnitude of L \overset { \rightarrow }{ L } will be i 2 + j 2 + k 2 { i }^{ 2 }+{ j }^{ 2 }+k^{ 2 }

We have to find 1 i , j , k 4 i 2 + j 2 + k 2 \sum _{ 1\le i,j,k\le 4 }^{ }{ { i }^{ 2 }+{ j }^{ 2 }+k^{ 2 } }

Since all of the variables here independent of each other except for the fact that the number of times one variable's value repeats depend on the other two

If we fix the value of i i then j j and k k can be chosen in 16 16 ways, and same goes for fixing j j or k k ,and since there is symmetry, the sums in all three

cases is equal,so the sum equals, ( 1 + 4 + 9 + 16 ) ( 3 ) ( 16 ) (1+4+9+16)*(3)*(16) which equals 1440 1440

Required answer is Sum- 1350 = 1440 1350 = 90 1350=1440-1350=90

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...