Mobile robot 1

Geometry Level 3

A mobile robot, with a reference frame ( x 0 , y 0 x_0, y_0 ) assigned as shown in the above figure, is on a planar track and moves from point A = ( 3 , 0 ) A= (3,0) in a linear path to point B = ( 13 , 9 ) B= (13,9) .

When the robot arrives to point B B , the mobile robot’s sensors detect a small object located at C = ( 6 , 5 ) C = (6,5) , w.r.t its coordinates ( x 1 , y 1 x_1,y_1 ) Find the coordinates of this object w.r.t. the reference frame ( x 0 , y 0 x_0, y_0 ) .

( 14.051 , 16.512 ) (14.051, 16.512) ( 14.678 , 16.757 ) (14.678, 16.757) ( 14.115 , 16.730 ) (14.115, 16.730) ( 15.511 , 16.370 ) (15.511,16.370)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Steven Chase
Apr 4, 2017

Define the vector from A to B:

v A B = ( 13 3 ) ı ^ + ( 9 0 ) ȷ ^ = 10 ı ^ + 9 ȷ ^ \large{\vec{v_{AB}} = (13 - 3) \hat{\imath} + (9 - 0) \hat{\jmath} = 10 \hat{\imath} + 9 \hat{\jmath}}

The first unit vector of a pair of orthogonal unit vectors that will define the new coordinate system:

u 1 = 10 ı ^ + 9 ȷ ^ 181 \large{\vec{u_1} = \frac{10 \hat{\imath} + 9 \hat{\jmath}}{\sqrt{181}}}

And the second:

u 2 = 9 ı ^ + 10 ȷ ^ 181 \large{\vec{u_2} = \frac{-9 \hat{\imath} + 10 \hat{\jmath}}{\sqrt{181}}}

The displacement of the small object from the origin in the original coordinate system is:

D x = 13 + 6 u 1 x + 5 u 2 x = 13 + 60 181 45 181 14.115 D y = 9 + 6 u 1 y + 5 u 2 y = 9 + 54 181 + 50 181 16.730 \large{\vec{D}_x} = 13 + 6 \vec{{u}_1}_x + 5 \vec{{u}_2}_x = 13 + \frac{60}{\sqrt{181}} - \frac{45}{\sqrt{181}} \approx \boxed{14.115} \\ \large{\vec{D}_y} = 9 + 6 \vec{{u}_1}_y + 5 \vec{{u}_2}_y = 9 + \frac{54}{\sqrt{181}} + \frac{50}{\sqrt{181}} \approx \boxed{16.730}

This is a very nice approach to solving the problem.

Ossama Ismail - 4 years, 2 months ago

Log in to reply

Thanks. I assume there is going to be a Part 2 coming?

Steven Chase - 4 years, 2 months ago
Ossama Ismail
Apr 5, 2017

You may solve this by using rotation and translation [ 4 × 4 ] [4 \times 4 ] homogenous matrices.

As shown in the above figure, there two Transformations T 1 and T 2 T_1 \ \text{and} \ \ T_2 , where

T 1 = T_1 = translation matrix from point ( 0 , 0 ) (0,0) to point ( 3 , 0 ) = ( 1 0 0 3 0 1 0 0 0 0 1 0 0 0 0 1 ) (3,0) = \left(\begin{array}{ccc} 1 & 0& 0 & \color{#D61F06} 3\\ 0 &1 &0 & \color{#D61F06} 0 \\ 0 & 0 &1 &0 \\ 0 & 0 &0 &1 \\ \end{array} \right)

T 2 = T_2 = translation matrix from point ( 3 , 0 ) (3,0) to point ( 13 , 9 ) (13,9) followed by rotation of θ = ( cos ( θ ) sin ( θ ) 0 10 sin ( θ ) cos ( θ ) 0 9 0 0 1 0 0 0 0 1 ) \angle \theta = \left(\begin{array}{ccc} \cos(\color{#624F41}\theta) & -\sin(\color{#624F41}\theta) &0 & \color{#D61F06}10 \\ \sin(\color{#624F41}\theta) & \cos(\color{#624F41}\theta) & 0 & \color{#D61F06}9\\ 0 &0 &1 &0 \\ 0 & 0 &0 &1 \\ \end{array} \right)

θ = rontation angle about z a x i s by tan 1 ( 9 10 ) and sin ( θ ) = 9 181 & cos ( θ ) = 10 181 \begin{aligned} \angle \color{#624F41}\theta & = \text{ rontation angle about } \ \ z-axis \ \ \text{by} \ \ \angle \tan^{-1}(\frac{9}{10})\ \text{and} \\ &\sin({\theta }) = \dfrac{9}{\sqrt{181}} \ \ \text{\&} \ \ \cos({\theta }) = \dfrac{10}{\sqrt{181}} \end{aligned}

Then the total transformation T = T 1 T 2 = ( 10 181 9 181 0 13 9 181 10 181 0 9 0 0 1 0 0 0 0 1 ) T = T_1 \ T_2 = \left(\begin{array}{ccc} \dfrac{10}{\sqrt{181}} & -\dfrac{9}{\sqrt{181}} &0 & \color{#D61F06}13 \\ \dfrac{9}{\sqrt{181}} & \dfrac{10}{\sqrt{181}} & 0 & \color{#D61F06}9\\ 0 &0 &1 &0 \\ 0 & 0 &0 &1 \\ \end{array} \right) \\

Any point expressed in frame ( x 1 , y 1 ) (x_1,y_1) can be expressed in frame ( x 0 , y 0 ) (x_0,y_0) by using the transformation matrix T T

Point C C in frame ( x 0 , y 0 ) = T (x_0,y_0) = T [ C C expressed in frame ( x 1 , y 1 ) ] = T ( 6 5 0 1 ) = ( 60 181 45 181 + 13 54 181 + 50 181 + 9 0 1 ) = ( 14.115 16.730 0 1 ) (x_1,y_1) ] = T \left(\begin{array}{c} &6 \\ &5\\ &0 \\ &1 \\ \end{array} \right) = \left(\begin{array}{c} &\frac{60}{\sqrt{181}} - \frac{45}{\sqrt{181} } + 13 \\ &\frac{54}{\sqrt{181}} +\frac{50}{\sqrt{181}} + 9 \\ &0 \\ &1 \\ \end{array} \right) = \left(\begin{array}{c} &14.115 \\ & 16.730\\ &0 \\ &1 \\ \end{array} \right)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...