Mod equation

Algebra Level 3

For all real numbers, x |x| is defined as the absolute value of x x ; for example 4.2 = 4.2 |4.2| = 4.2 and 7 = 7 |-7| = 7 . Given that x x and y y are integer, how many different solutions does the equation x + 2 y = 100 |x| + 2|y| = 100 have?

198 infinite 200 199 cant be determined 0 1 none of these

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jan 26, 2016

From x + 2 y = 100 |x| + 2|y| = 100 , we note that the range of y y is 50 y 50 -50 \le y \le 50 . The solutions to the equation 2 y + x = 100 2|y|+|x|= 100 are as follows:

2 0 + { + 100 100 , { 2 + 1 + { + 98 98 2 1 + { + 98 98 , { 2 + 2 + { + 96 96 2 2 + { + 96 96 , { 2 + 3 + { + 94 94 2 3 + { + 94 94 , . . . { 2 + 49 + { + 2 2 2 49 + { + 2 2 , { 2 + 50 + 0 2 50 + 0 \Rightarrow 2|0| + \begin{cases} |+100| \\ |-100| \end{cases} , \space \begin{cases} 2|+1| + \begin{cases} |+98| \\ |-98| \end{cases} \\ 2|-1| + \begin{cases} |+98| \\ |-98| \end{cases} \end{cases} , \space \begin{cases} 2|+2| + \begin{cases} |+96| \\ |-96| \end{cases} \\ 2|-2| + \begin{cases} |+96| \\ |-96| \end{cases} \end{cases} , \\ \quad \quad \begin{cases} 2|+3| + \begin{cases} |+94| \\ |-94| \end{cases} \\ 2|-3| + \begin{cases} |+94| \\ |-94| \end{cases} \end{cases}, ... \begin{cases} 2|+49| + \begin{cases} |+2| \\ |-2| \end{cases} \\ 2|-49| + \begin{cases} |+2| \\ |-2| \end{cases} \end{cases}, \space \begin{cases} 2|+50| + |0| \\ 2|-50| + |0| \end{cases}

Therefore the total number of solutions = 2 + 49 × 4 + 2 = 200 = 2+49\times 4 + 2 = \boxed{200}

Prince Loomba
Jan 26, 2016

If |y| 50, 2|y| 100, and |x| would need to be negative, so -50 <= y<= 50.
If y = 50, then 2|y| = 100 x = 0; that is, one solution for y = -50 and one
solution for y = 50.
But for -49 <=y<= 49 there will be two values of x for each value of y; for example, if y
= -20, 2|y| = 40, |x| = 60 x = +-60.
Therefore from -49 to 49 there are 49 (negative) + 1 (zero) + 49 (positive) = 99
values of y, each of which has two solutions.
Hence there are 2 *99 + 2 = 200 distinct solutions to the equation.


0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...