Mod of n ! n!

100 ! 100 ! m o d 50 ! 50 ! = ? \large 100! ^ {100!} \bmod 50!^{50!} = ?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Jordan Cahn
Apr 15, 2019

100 ! 100 ! = 50 ! 100 ! ( 51 52 99 100 ) 100 ! = ( 50 ! 50 ! ) 51 52 99 100 ( 51 52 99 100 ) 100 ! 0 m o d 50 ! 50 ! 100!^{100!} = 50!^{100!}\left(51\cdot 52\cdots 99\cdot 100\right)^{100!} = \left(50!^{50!}\right)^{51\cdot52\cdots 99\cdot 100}\left(51\cdot52\cdots 99\cdot 100\right)^{100!} \equiv 0\bmod 50!^{50!}

CodeCrafter 1
Apr 15, 2019

100 ! = 50 ! 51 52 99 100 100! = 50! * 51 *52 * \cdots * 99 *100 So 100 ! 100! is divisible by 50 ! 50!

{ 100! }^{ m }={ (50!*51*\cdots *99*100) }^{ m }={ 50! }^{ m }*{ \left( 51*\cdots *99*100 \right) }^{ m } So it is always divisible by 50 ! n { 50! }^{ n } , if m n m\ge n .

Here is an example, I hope that you will understand this.

5! = 1 × 2 × 3 × 4 × 5 1 \times 2 \times \boxed{3} \times 4 \times 5

So the number is divisible by 3

5! mod 3 = 0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...