Mod of the cubics!

Algebra Level 4

It is known for a complex number z = a + i b z=a+ib , ( a , b R a,b\in R ) that

z = z 2 + z 3 |z|=|{ z }^{ 2 }|+|{ z }^{ 3 }|

It is also know that 0 < a < 1 2 ( 3 5 ) 0<a<\sqrt { \frac { 1 }{ 2 } \left( 3-\sqrt { 5 } \right) }

Then b |b| can be expressed as A a 2 B + C D \sqrt { \frac { -A{ a }^{ 2 }-\sqrt { B } +C }{ D } }

Here A , B , C , D A,B,C,D are positive integers, B B is square free, C C and D D are co-prime.

Find A + B + C + D A+B+C+D


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Guilherme Niedu
Jun 6, 2017

Denoting j j as the imaginary unit:

z = r e j θ \large \displaystyle z=re^{j\theta}

Then:

z = z 2 + z 3 \large \displaystyle |z| = |z^2| + |z^3|

r = r 2 + r 3 \large \displaystyle r = r^2 + r^3

Since r 0 r \neq 0 :

r 2 + r 1 = 0 \large \displaystyle r^2 + r - 1 =0

Since r > 0 r > 0 :

r = 5 1 2 \color{#20A900} \boxed{\large \displaystyle r = \frac{\sqrt{5}-1}{2}}

Thus:

a 2 + b 2 = r 2 \large \displaystyle a^2 + b^2 = r^2

a 2 + b 2 = 6 2 5 4 \large \displaystyle a^2 + b^2 = \frac{6 - 2\sqrt{5}}{4}

b 2 = 6 2 5 4 a 2 4 \large \displaystyle b^2 = \frac{6 - 2\sqrt{5}-4a^2}{4}

b = 2 a 2 5 + 3 2 \color{#20A900} \boxed{\large \displaystyle |b| = \sqrt{\frac{-2a^2 - \sqrt{5} +3}{2}}}

Thus:

A = 2 , B = 5 , C = 3 , D = 2 , A + B + C + D = 12 \color{#3D99F6} \large \displaystyle A=2, B=5, C=3,D=2, \boxed{\large \displaystyle A+B+C+D=12}

Alex Delhumeau
Jun 4, 2017

By the properties of modulus, z = z 2 + z 3 |z|=|{ z }^{ 2 }|+|{ z }^{ 3 }| where z = a + b i z = a + bi rewrites as z = z 2 + z 3 |z|=|{ z }|^2+|{ z }|^3 .

Thus solving for z |z| , we have z = 0 |z| = 0 , which is rejected because a > 0 z > 0 a>0 \Rightarrow |z| > 0 , or z = 1 ± 5 2 |z| = \frac{-1\pm \sqrt{5}}{2} . Again, z > 0 |z| > 0 rejects 1 5 2 \frac{-1\ - \sqrt{5}}{2} as a possible solution, leaving the correct answer

z = 5 1 2 |z| = \frac{\sqrt{5}-1}{2} ( z 2 ) = 1 2 ( 3 5 ) = a 2 + b 2 (|z|^2) = \frac{1}{2}(3 - \sqrt{5}) = a^2 + b^2 b 2 = 1 2 ( ( 3 ) 5 ) a 2 = 2 a 2 5 + 3 2 b^2 = \frac{1}{2}((3) - \sqrt{5}) - a^2 = \frac{-2a^2 - \sqrt{5} + 3}{2} b 2 = b = 2 a 2 5 + 3 2 . \sqrt{b^2} = |b| = \sqrt{\frac{-2a^2 - \sqrt{5} + 3}{2}}.

A = 2 , B = 5 , C = 3 , A = 2, B = 5, C = 3, and D = 2 D = 2 , thus A + B + C + D = 12 A + B + C + D = \boxed{12} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...