Moderate Integration Problem

Calculus Level 3

sec 3 x d x = ? \large \int \sec^3 x \ dx= \, ?

Clarification : C C denotes the arbitrary constant of integration .

sec 3 x + tan x + C \sec^3 x +\tan x +C 1 2 sec x tan x + 1 2 ln sec x + tan x + C \frac 12 \sec⁡ x \tan⁡ x+ \frac 12 \ln\mid \sec⁡ x+\tan ⁡ x\mid+C 1 2 sec x tan x + ln sec x tan x + C \frac 12 \sec x \tan x + \ln ⁡\mid\sec x - \tan ⁡x \mid+C 1 2 sec x tan x + 1 2 ln sec x tan x + C \frac 12 \sec ⁡x \tan x + \frac 12 \ln ⁡\mid\sec⁡ x-\tan⁡ x\mid+C sec x tan x sec 3 x + sec x + C \sec⁡ x \tan⁡ x-\sec^3 x+\sec x +C

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jun 23, 2016

I = sec 3 x d x By integration by parts: f = sec 2 x , g = sec x = sec x tan x tan 2 x sec x d x = sec x tan x ( sec 2 x 1 ) sec x d x = sec x tan x sec 3 x d x + sec x d x = sec x tan x I + sec x d x 2 I = sec x tan x + ln ( sec x + tan x ) See Note I = 1 2 sec x tan x + 1 2 ln ( sec x + tan x ) + C \begin{aligned} I & = \int \sec^3 x \ dx \quad \quad \small \color{#3D99F6}{\text{By integration by parts: }f' = \sec^2 x, \ \ g = \sec x} \\ & = \sec x \tan x - \int \color{#3D99F6}{\tan^2 x} \sec x \ dx \\ & = \sec x \tan x - \int \color{#3D99F6}{(\sec^2 x - 1)} \sec x \ dx \\ & = \sec x \tan x - \color{#3D99F6}{\int \sec^3 x \ dx} + \int \sec x \ dx \\ & = \sec x \tan x - \color{#3D99F6}{I} + \color{#D61F06}{\int \sec x \ dx} \\ \color{#3D99F6}{2I} & = \sec x \tan x + \color{#D61F06}{\ln(\sec x + \tan x)} \quad \quad \small \color{#D61F06}{\text{See Note}} \\ \implies I & = \boxed{\frac 12 \sec x \tan x + \frac 12 \ln(\sec x + \tan x) + C} \end{aligned}


Note: \color{#D61F06}{\text{Note: }}

Let u = sec x + tan x u = \sec x + \tan x , then

d u = ( sec x tan x + sec 2 x ) d x = sec x ( tan x + sec x ) d x = u sec x d x sec x d x = d u u = ln u + C = ln ( sec x + tan x ) + C \begin{aligned} du & = (\sec x \tan x + \sec^2 x) \ dx \\ & = \sec x (\tan x + \sec x) \ dx \\ & = u \sec x dx \\ \implies \int \sec x \ dx & = \int \frac {du}u \\ & = \ln u + C \\ & = \ln (\sec x + \tan x) + C \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...