Modify it your way!

Geometry Level 3

sin 6 x + cos 6 x \large \sin^6 x+ \cos^6 x

If A A and B B are the minimum and maximum values possible of the expression above for real x x , then what is the value of A + B A+B ?


The answer is 1.25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Using the identity a 3 + b 3 = ( a + b ) ( a 2 a b + b 2 ) a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2}) with in this case a = sin 2 ( x ) a = \sin^{2}(x) and b = cos 2 ( x ) b = \cos^{2}(x) , along with the identity sin 2 ( x ) + cos 2 ( x ) = 1 \sin^{2}(x) + \cos^{2}(x) = 1 , we have that

sin 6 ( x ) + cos 6 ( x ) = ( sin 2 ( x ) + cos 2 ( x ) ) ( sin 4 ( x ) sin 2 ( x ) cos 2 ( x ) + cos 4 ( x ) ) = \sin^{6}(x) + \cos^{6}(x) = (\sin^{2}(x) + \cos^{2}(x))(\sin^{4}(x) - \sin^{2}(x)\cos^{2}(x) + \cos^{4}(x)) =

( sin 2 ( x ) + cos 2 ( x ) ) 2 3 sin 2 ( x ) cos 2 ( x ) = 1 3 4 × ( 2 sin ( x ) cos ( x ) ) 2 = 1 3 4 sin 2 ( 2 x ) (\sin^{2}(x) + \cos^{2}(x))^{2} - 3\sin^{2}(x)\cos^{2}(x) = 1 - \dfrac{3}{4} \times (2\sin(x)\cos(x))^{2} = 1 - \dfrac{3}{4}\sin^{2}(2x) ,

since sin ( 2 x ) = 2 sin ( x ) cos ( x ) \sin(2x) = 2\sin(x)\cos(x) . Now 1 sin ( 2 x ) 1 0 sin 2 ( 2 x ) 1 -1 \le \sin(2x) \le 1 \Longrightarrow 0 \le \sin^{2}(2x) \le 1 , so

1 3 4 1 3 4 sin 2 ( 2 x ) 1 1 - \dfrac{3}{4} \le 1 - \dfrac{3}{4}\sin^{2}(2x) \le 1 , and thus A + B = 1 4 + 1 = 5 4 = 1.25 A + B = \dfrac{1}{4} + 1 = \dfrac{5}{4} = \boxed{1.25} .

Guy Alves
Jun 4, 2017

Differentiate the equation into 6sin(x)cos(x) * [ s i n 4 sin^{4} (x)- c o s 4 ( x ) cos^{4}(x) ]

Then set it equal to zero for the x coordinates of the extrema.

Maximum values is 1.

Minimum value is 0.25.

Add them together for the answer of 1.25 \boxed{1.25} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...