Modular Equation 1

If x , y x , y are integers that satisfies the conditions below,

{ 4 x + 5 y 9 m o d 23 5 x + 11 y 9 m o d 23 x , y > 0 , \displaystyle \begin {cases} 4x + 5y \equiv 9 \mod 23 \\ 5x + 11y \equiv 9 \mod 23 \\ x , y > 0 , \end {cases}

What is the value of ( x + y ) m o d 23 (x+y) \mod 23 ?


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Christian Daang
Mar 7, 2017

4 x + 5 y 9 m o d 23 4 x + 5 y = 23 k + 9 20 x + 25 y = 115 k + 45 ( 1 ) 4x + 5y \equiv 9 \mod 23 \\ \implies 4x + 5y = 23k + 9 \\ \implies 20x + 25y = 115k + 45 \ (1) 5 x + 11 y 9 m o d 23 5 x + 11 y = 23 h + 9 20 x + 44 y = 92 h + 36 ( 2 ) ( 1 ) ( 2 ) 19 y = 115 k 92 h + 9 5x + 11y \equiv 9 \mod 23 \\ \implies 5x + 11y = 23h + 9 \\ \implies 20x + 44y = 92h + 36 \ (2) \\ \\ (1) - (2) \ \implies -19y = 115k - 92h + 9 Applying m o d 23 4 y m o d 23 9 m o d 23 ( 4 y 9 ) m o d 23 = 0 4 y 9 = 23 a 4 y = 23 a + 9 y = 8 , a = 1 y = 8 + 23 p or in terms of mod, y = 8 m o d 23 \text{Applying} \mod 23 \\ \implies 4y \mod 23 \equiv 9 \mod 23 \\ (4y - 9) \mod 23 = 0 \\ \implies 4y - 9 = 23a \implies 4y = 23a + 9 \\ \implies y = 8 , a = 1 \\ \implies y = 8 + 23p \ \text{or in terms of mod, } \ y = 8 \mod 23 4 x + 5 y = 23 k + 9 44 x + 55 y = ( 23 11 ) k + 99 ( 3 ) 4x + 5y = 23k + 9 \\ \implies 44x + 55y = (23*11)k + 99 \ (3) 5 x + 11 y = 23 h + 9 25 x + 55 y = ( 23 5 ) h + 45 ( 4 ) ( 3 ) ( 4 ) 19 x = ( 23 ) ( 11 k 5 h ) + 54 5x + 11y = 23h + 9 \\ \implies 25x + 55y = (23*5)h + 45 \ (4) \\ \\ (3) - (4) \ \implies 19x = (23)(11k - 5h) + 54 Applying m o d 23 4 x m o d 23 54 m o d 23 8 m o d 23 x 2 m o d 23 21 m o d 23 \text{Applying} \mod 23 \\ \implies -4x \mod 23 \equiv 54 \mod 23 \equiv 8 \mod 23 \\ \implies x \equiv -2 \mod 23 \equiv 21 \mod 23 Since x m o d 23 21 , y m o d 23 8 ( x + y ) m o d 23 29 m o d 23 6 \text{Since} \ x \mod 23 \equiv 21 \ , \ y \mod 23 \equiv 8 \\ \\ \implies \boxed{(x+y) \mod 23 \equiv 29 \mod 23 \equiv 6}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...