For all positive integer n , is it always true that 3 2 n + 2 − 8 n − 9 ≡ 0 ( m o d 6 4 ) ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Similar solution with @David Vreken 's
N = 3 2 n + 2 − 8 n − 9 = 9 n + 1 − 8 n − 8 − 1 = ( 8 + 1 ) n + 1 − 8 ( n + 1 ) − 1 = k = 0 ∑ n + 1 ( k n + 1 ) 8 k − 8 ( n + 1 ) − 1 = k = 2 ∑ n + 1 ( k n + 1 ) 8 k + 8 ( n + 1 ) + 1 − 8 ( n + 1 ) − 1 = k = 2 ∑ n + 1 ( k n + 1 ) 8 k = 6 4 k = 0 ∑ n + 1 ( k + 2 n + 1 ) 8 k ≡ 0 (mod 64)
Yes , it is always true.
3 2 n + 2 − 8 n − 9
= 3 2 ( n + 1 ) − 8 n − 9
= 9 n + 1 − 8 n − 9
= ( 8 + 1 ) n + 1 − 8 n − 8 − 1
= ( 8 + 1 ) n + 1 − 8 ( n + 1 ) − 1
= ( ( n + 1 n + 1 ) 8 n + 1 1 0 + ( n n + 1 ) 8 n 1 1 + ( n − 1 n + 1 ) 8 n − 1 1 2 + . . . + ( 2 n + 1 ) 8 2 1 n − 1 + ( 1 n + 1 ) 8 1 1 n + ( 0 n + 1 ) 8 0 1 n + 1 ) − 8 ( n + 1 ) − 1 (by the binomial expansion)
= ( k 8 2 + ( n + 1 ) 8 + 1 ) − 8 ( n + 1 ) − 1 (for some integer k )
= k 8 2
= 6 4 k
Since 6 4 k is always divisible by 6 4 , 3 2 n + 2 − 8 n − 9 ≡ 0 ( m o d 6 4 ) is always true .
Problem Loading...
Note Loading...
Set Loading...
Let the equation be true for n equal to some non-negative integer a. Note that it is true for n=0.
3 2 a + 2 − 8 a − 9 ≡ 0 ( m o d 6 4 )
multiply through by 9
3 2 a + 4 − 7 2 a − 8 1 ≡ 0 ( m o d 6 4 )
3 2 a + 4 − 8 a − 8 − 9 ≡ 6 4 a + 6 4 ( m o d 6 4 ) (multiples of 64 are of course 0 (mod 64))
3 2 a + 4 − 8 a − 8 − 9 ≡ 0 ( m o d 6 4 )
3 2 ( a + 1 ) + 2 − 8 ( a + 1 ) − 9 ≡ 0 ( m o d 6 4 )
Thus if the equation is true for any n=a it is also true for n=a+1. It is true for n=0. Proof by induction.