Modular Power Train

Let 0 < n 50 0<n \leq 50 be a positive integer satisfying the relation

( i = 1 n ( 1 ) i ( i i 2 m o d 10 ) ) m o d 10 = n m o d 10 \Large{\left(\sum_{i=1}^{n} (-1)^{i}\left(i^{i^2} \mod 10\right)\right) \mod 10 = n \mod 10}

Find the sum of all the solutions in the range 0 < n 50 0<n \leq 50 .

217 510 Zero because there is no such n n in the given range 129

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let us 'peel' the solution layer by layer.

Layer 1

Consider the problem of finding i 2 m o d 4 i^2 \mod 4 for a positive integer i i .

If i = 2 m i=2m is even, then i 2 m o d 4 = 4 m 2 m o d 4 = 0 i^2 \mod 4 = 4m^2 \mod 4 = 0 , and

if i = 2 m + 1 i=2m+1 is odd, then i 2 m o d 4 = 4 ( m 2 + m ) + 1 m o d 4 = 1 i^2 \mod 4 = 4(m^2+m)+1 \mod 4 = 1

Layer 2

(ODD i) Now if i i is an odd number i i 2 = i 4 k + 1 i^{i^2} = i^{4k+1} for some k k

and hence for odd i i

i i 2 m o d 10 = ( i m o d 10 ) i 2 = ( i m o d 10 ) 4 k ( i m o d 10 ) i^{i^2} \mod 10 = \left(i \mod 10\right)^{i^2} = \left(i \mod 10\right)^{4k}\left(i \mod 10\right)

It is interesting to note that 1 4 m o d 10 = 3 4 m o d 10 = 7 4 m o d 10 = 9 4 m o d 10 = 1 1^4 \mod 10 = 3^4 \mod 10 = 7^4 \mod 10 = 9^4 \mod 10 = 1 and 5 4 m o d 10 = 5 5^4 \mod 10 = 5 and

further that 1 k m o d 4 = 1 1^k \mod 4 = 1 and 5 k m o d 4 = 5 5^k \mod 4 = 5

Hence, i i 2 m o d 10 = i m o d 10 \boxed{i^{i^2} \mod 10 = i \mod 10} for all odd numbers.

(EVEN i) If i i is an even number, i i 2 = i 4 k i^{i^2} = i^{4k} for some k k , which results in

i i 2 m o d 10 = ( i m o d 10 ) i 2 = ( i m o d 10 ) 4 k ( i m o d 10 ) i^{i^2} \mod 10 = \left(i \mod 10\right)^{i^2} = \left(i \mod 10\right)^{4k}\left(i \mod 10\right)

It is again interesting to see that for even i i , not divisible by 10, 2 4 m o d 10 4 4 m o d 10 = 6 4 m o d 10 = 8 4 m o d 10 = 6 2^4 \mod 10 \ 4^4 \mod 10 = 6^4 \mod 10 = 8^4 \mod 10 = 6

Further, 6 k m o d 10 = 6 6^k \mod 10 = 6

Hence, for any even number which is not 0 modulo 10, i i 2 m o d 10 = 6 \boxed{i^{i^2} \mod 10 = 6}

Layer 3

Now a table can be formed

i m o d 10 i \mod 10 ( 1 ) i i i 2 m o d 10 (-1)^{i} i^{i^2} \mod 10
1 -1
2 6
3 -3
4 6
5 -5
6 6
7 -7
8 6
9 -9
0 0

Layer 4

Using the above table for evaluating the sum for various n n , it can be seen that L H S = n m o d 10 LHS = n \mod 10 for n = 8 , 9 , 32 , 36 , 44 n=8,9,32,36,44

Therefore, we have the solution to be 8 + 9 + 32 + 36 + 44 = 129 8+9+32+36+44=\boxed{129}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...