Modular Root II

{ x 2 + 3 x 7 0 ( m o d 71 ) x 2 5 x 16 0 ( m o d 89 ) \begin{aligned} \begin{cases} x^2 + 3x - 7 &\equiv 0 \pmod{71} \\ x^2 - 5x - 16 &\equiv 0 \pmod{89} \end{cases} \end{aligned}

Let x x be a positive integer satisfying the system of equations above. What is the least possible value of x ? x?


The answer is 47.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

x 2 + 3 x 7 x 2 + 3 x 71 x 7 x 2 68 x 7 0 ( m o d 71 ) x^2 + 3x - 7 \equiv x^2 +3x-71x -7 \equiv x^2 - 68x -7 \equiv 0 \pmod{71}

Thus, x 2 68 x + 3 4 2 ( x 34 ) 2 3 4 2 + 7 68 17 + 7 ( 3 ) 17 + 7 27 ( m o d 71 ) x^2 -68x + 34^2 \equiv (x-34)^2 \equiv 34^2 + 7 \equiv 68\cdot 17 + 7 \equiv (-3)\cdot 17+7 \equiv 27 \pmod{71} .

According to Tonelli-Shanks Algorithm , if the prime modulus p 3 ( m o d 4 ) p \equiv 3 \pmod{4} , then the solution x 34 ± 2 7 71 + 1 4 ± 2 7 18 ± 3 54 ( m o d 71 ) x-34 \equiv \pm 27^{\frac{71+1}{4}} \equiv \pm 27^{18} \equiv \pm 3^{54} \pmod{71} .

Then according to Fermat's Little Theorem , 3 71 1 3 7 0 ( 3 16 ) ( 3 54 ) 1 ( m o d 71 ) 3^{71-1} \equiv 3^70 \equiv (3^{16})(3^{54}) \equiv 1 \pmod{71} .

Then 3 4 81 10 ( m o d 71 ) 3^4 \equiv 81 \equiv 10 \pmod{71} . 3 8 100 29 ( m o d 71 ) 3^8 \equiv 100 \equiv 29 \pmod{71} . 3 16 2 9 2 60 11 ( m o d 71 ) 3^{16} \equiv 29^2 \equiv 60 \equiv -11 \pmod{71} .

Since 11 13 143 1 ( m o d 71 ) 11\cdot 13 \equiv 143 \equiv 1 \pmod{71} , then ( 3 16 ) ( 3 54 ) ( 11 ) ( 13 ) 1 ( m o d 71 ) (3^{16})(3^{54}) \equiv (-11)(-13) \equiv 1 \pmod{71} .

Thus, 3 54 13 ( m o d 71 ) 3^{54} \equiv -13 \pmod{71} . Then x 34 ± 13 ( m o d 17 ) x \equiv 34 \pm 13 \pmod{17} .

Hence, x 47 ( m o d 71 ) x \equiv 47 \pmod{71} , or x 21 ( m o d 71 ) x \equiv 21 \pmod{71} .

For the latter congruence, x 2 5 x + 89 x 16 x 2 + 84 x 16 0 ( m o d 89 ) x^2 - 5x +89x - 16 \equiv x^2 + 84x -16 \equiv 0 \pmod{89} .

Similarly, x 2 + 84 x + 4 2 2 4 2 2 + 16 4 ( 2 1 2 + 4 ) 4 445 0 ( m o d 89 ) x^2 +84x +42^2 \equiv 42^2 +16 \equiv 4(21^2 + 4) \equiv 4\cdot 445 \equiv 0 \pmod{89} .

Hence, x + 42 0 ( m o d 89 ) x + 42 \equiv 0 \pmod{89} . x 42 47 ( m o d 89 ) x \equiv -42 \equiv 47 \pmod{89} .

As a result, the least possible value of x = 47 x = \boxed{47} .

Why did you make it so complicated? We can just do this:

x 2 5 x 16 0 ( m o d 89 ) 4 x 2 20 x 64 0 ( m o d 89 ) ( 2 x 5 ) 2 89 0 ( m o d 89 ) 2 x 5 94 ( m o d 89 ) x 47 ( m o d 89 ) \begin{aligned} && x^2 - 5x - 16 \equiv 0 \pmod{89} \\ && \Leftrightarrow 4x^2 - 20x -64 \equiv 0 \pmod{89} \\ && \Leftrightarrow (2x-5)^2 - 89 \equiv 0 \pmod{89} \\ && \Leftrightarrow 2x \equiv 5 \equiv 94 \pmod{89} \\ && \Leftrightarrow \quad x \equiv 47 \pmod{89} \end{aligned}

What's left to do is to verify that x = 47 x = 47 also satisfy the first congruence, and we're done.

Pi Han Goh - 4 years, 2 months ago

Log in to reply

Very good answer!

Bostang Palaguna - 2 years, 6 months ago

good thinking on multiplying by 4 on both sides

Nitin Kumar - 1 year, 7 months ago
Aakash Khandelwal
May 29, 2017

It may seem to be different method , but it's virtually same. Nevertheless for sake of variety:

See the second congruence,

Let x 2 5 x 16 = 89 n x^{2} -5x -16= 89n

Discriminant D D of this quadratic equation

= 89 × ( 1 + 4 n ) 89 \times (1+ 4n)

For x x to be integer (+ve)

D D is to be a perfect square 4 n + 1 4n+1 is to be like 89 × p 2 89 \times p^{2} . As 89 is prime .

For smallest we take p p = 1 .

We get x = 47 x= 47

To check its smallest , we find it to be satisfying first congruence.

Assumptions : n n and p p are natural numbers.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...