Modulo Integration?

Calculus Level 5

Given that A = 1 1 m o d ( x , x 2 ) d x A = \int _{ -1 }^{ 1 }{ \mod{(x,{ x }^{ 2 })} } \space \mathrm{d}x

Find 10000 A \left\lfloor 10000A \right\rfloor


Note: m o d ( a , b ) = c \mod (a, b) = c where 0 c < a 0 \leq c < a and a c = k b a -c = k b for some integer k k .

Try my Other Problems


The answer is 3333.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Julian Poon
Feb 28, 2015

First of all, the graph y = m o d ( f ( x ) , g ( x ) ) y=\mod{(f(x),g(x))} would be the graph y = f ( x ) + n g ( x ) y=f(x)+ng(x) , bounded by the x-axis and the function g ( x ) g(x) where n n ranges over all the integers, positive and negative and 0 0 , and that there will not be more than 1 1 value for y y for a value of x x . here is a simulation showing what I mean.

You can try proving that ^ yourself.


So, for the graph of m o d ( x , x 2 ) \mod{(x,x^{2})} , it would be the graph y = x + n x 2 y=x+nx^{2} . bounded by the x-axis and the function x 2 x^{2} .


Lets focus on 0 1 m o d ( x , x 2 ) d x \int _{ 0 }^{ 1 }{ \mod{(x,{ x }^{ 2 })} } dx

The points at which y = x n x 2 y=x-nx^{2} touch the x-axis can be easily derived to be x = 1 n x=\frac{1}{n} , for all positive integer n n more than 0 0 . Note that for now it is y = x n x 2 y=x-nx^{2} instead of y = x + n x 2 y=x+nx^{2} because I am using positive values of n n .

Therefore, 0 1 m o d ( x , x 2 ) d x = n = 1 1 n + 1 1 n x n x 2 d x = n = 1 3 n + 1 6 n 2 ( n + 1 ) 3 \int _{ 0 }^{ 1 }{ \mod{(x,{ x }^{ 2 })} } dx=\sum _{ n=1 }^{ \infty }{ \int _{ \frac { 1 }{ n+1 } }^{ \frac { 1 }{ n } }{ x-n{ x }^{ 2 } } } dx=\sum _{ n=1 }^{ \infty }{ \frac { 3n+1 }{ 6{ n }^{ 2 }{ (n+1) }^{ 3 } } }

We would leave that mess for later.


Now lets focus on 1 0 m o d ( x , x 2 ) d x \int _{ -1 }^{ 0 }{ \mod{(x,{ x }^{ 2 })} } dx .

The points at which y = x + n x 2 y=x+nx^{2} touch the x-axis can be easily derived to be 1 n -\frac{1}{n} , for all positive integers n n more than 1 1 . However, we will be leaving out the graph for when n = 1 n=1 || x + x 2 x+x^{2} because it does not interfere in the of x = 1 x=-1 to x = 1 x=1 in the graph y = m o d ( f ( x ) , g ( x ) ) y=\mod{(f(x),g(x))} .

Therefore, 1 0 m o d ( x , x 2 ) = n = 2 1 n 1 1 n x + n x 2 d x = n = 2 3 n 1 6 n 2 ( n 1 ) 3 \int _{ -1 }^{ 0 }{ \mod{(x,{ x }^{ 2 })} }=\sum _{ n=2 }^{ \infty }{ \int _{ -\frac { 1 }{ n-1 } }^{ -\frac { 1 }{ n } }{ x+n{ x }^{ 2 } } } dx=\sum _{ n=2 }^{ \infty }{ \frac { 3n-1 }{ 6{ n }^{ 2 }{ (n-1) }^{ 3 } } }


Summing them together:

1 0 m o d ( x , x 2 ) d x + 0 1 m o d ( x , x 2 ) d x = 1 1 m o d ( x , x 2 ) d x \int _{ -1 }^{ 0 }{ \mod{(x,{ x }^{ 2 })} } dx+\int _{ 0 }^{ 1 }{ \mod{(x,{ x }^{ 2 })} } dx = \int _{ -1 }^{ 1 }{ \mod{(x,{ x }^{ 2 })} } dx = n = 1 3 n + 1 6 n 2 ( n + 1 ) 3 + n = 2 3 n 1 6 n 2 ( n 1 ) 3 =\sum _{ n=1 }^{ \infty }{ \frac { 3n+1 }{ 6{ n }^{ 2 }{ (n+1) }^{ 3 } } } +\sum _{ n=2 }^{ \infty }{ \frac { 3n-1 }{ 6{ n }^{ 2 }{ (n-1) }^{ 3 } } } = n = 2 3 n 1 6 n 2 ( n 1 ) 3 + n = 2 3 ( n 1 ) + 1 6 ( n 1 ) 2 ( n ) 3 = n = 2 ( 1 3 ( n 1 ) 3 1 3 n 3 ) =\sum _{ n=2 }^{ \infty }{ \frac { 3n-1 }{ 6{ n }^{ 2 }{ (n-1) }^{ 3 } } } +\sum _{ n=2 }^{ \infty }{ \frac { 3(n-1)+1 }{ 6{ (n-1) }^{ 2 }{ (n) }^{ 3 } } } =\sum _{ n=2 }^{ \infty }{ \left( \frac { 1 }{ 3{ (n-1) }^{ 3 } } -\frac { 1 }{ 3{ n }^{ 3 } } \right) }

And look! A telescoping series!

Evaluating that gives 1 1 m o d ( x , x 2 ) d x = 1 3 \int _{ -1 }^{ 1 }{ \mod{(x,{ x }^{ 2 })} } dx=\boxed{\frac{1}{3}}


Additional:

1 0 m o d ( x , x 2 ) d x = 1 6 n = 2 ( 1 n 2 ) 1 6 n = 1 ( 1 n 2 ) + 1 3 n = 1 ( 1 n 3 ) = 1 6 ( π 2 6 1 ) π 2 36 + ζ ( 3 ) 3 = ζ ( 3 ) 3 1 6 \int _{ -1 }^{ 0 }{ \mod{(x,{ x }^{ 2 })} } dx=\frac { 1 }{ 6 } \sum _{ n=2 }^{ \infty }{ \left( \frac { 1 }{ { n }^{ 2 } } \right) } -\frac { 1 }{ 6 } \sum _{ n=1 }^{ \infty }{ \left( \frac { 1 }{ { n }^{ 2 } } \right) } +\frac { 1 }{ 3 } \sum _{ n=1 }^{ \infty }{ \left( \frac { 1 }{ { n }^{ 3 } } \right) } =\frac { 1 }{ 6 } \left( \frac { { \pi }^{ 2 } }{ 6 } -1 \right) -\frac { { \pi }^{ 2 } }{ 36 } +\frac { \zeta (3) }{ 3 } =\frac { \zeta (3) }{ 3 } -\frac { 1 }{ 6 }

0 1 m o d ( x , x 2 ) d x = 1 6 n = 1 ( 1 n 2 ) 1 6 n = 2 ( 1 n 2 ) 1 3 n = 2 ( 1 n 3 ) = 1 6 ( π 2 6 1 ) + π 2 36 ζ ( 3 ) 3 + 1 3 = 1 2 ζ ( 3 ) 3 \int _{ 0 }^{ 1 }{ \mod{(x,{ x }^{ 2 })} } dx=\frac { 1 }{ 6 } \sum _{ n=1 }^{ \infty }{ \left( \frac { 1 }{ { n }^{ 2 } } \right) } -\frac { 1 }{ 6 } \sum _{ n=2 }^{ \infty }{ \left( \frac { 1 }{ { n }^{ 2 } } \right) } -\frac { 1 }{ 3 } \sum _{ n=2 }^{ \infty }{ \left( \frac { 1 }{ { n }^{ 3 } } \right) } =-\frac { 1 }{ 6 } \left( \frac { { \pi }^{ 2 } }{ 6 } -1 \right) +\frac { { \pi }^{ 2 } }{ 36 } -\frac { \zeta (3) }{ 3 } +\frac { 1 }{ 3 } =\frac { 1 }{ 2 } -\frac { \zeta (3) }{ 3 }

Did you mean ζ \zeta rather than ξ \xi in your appendix?

Jake Lai - 6 years, 3 months ago

Log in to reply

Yeah..... I could not find the latex for it, thanks!

Julian Poon - 6 years, 3 months ago
Kartik Sharma
Aug 17, 2015

This is what we need to find -

A = 1 1 m o d ( x , x 2 ) d x \displaystyle A = \int_{-1}^{1}{mod(x,{x}^{2}) \quad dx}

Now, as it is obvious that m o d ( a , b ) = c a c = k b c = a k b mod(a,b) = c \rightarrow a - c = kb \rightarrow c = a - kb

where k = a b k = \left \lfloor \frac{a}{b} \right \rfloor

Hence, m o d ( x , x 2 ) = x x x 2 x 2 = x 1 x x 2 mod(x,{x}^{2}) = x - \left \lfloor \frac{x}{{x}^{2}} \right \rfloor {x}^{2} = x - \left \lfloor \frac{1}{x} \right \rfloor {x}^{2}

A = 1 1 x 1 x x 2 d x \displaystyle A = \int_{-1}^{1}{x - \left \lfloor \frac{1}{x} \right \rfloor {x}^{2} \quad dx}

A = 0 1 1 1 x x 2 d x \displaystyle A = 0 - \int_{-1}^{1}{\left \lfloor \frac{1}{x} \right \rfloor {x}^{2} \quad dx}

Substituting u = 1 x u = \frac{1}{x}

A = 1 1 u 1 u 4 d u \displaystyle A = \int_{-1}^{1}{\left \lfloor u \right \rfloor \frac{1}{{u}^{4}} \quad du}

A = 0 0 1 1 u 4 d u + ( 1 ) 1 0 1 u 4 d u = 1 3 \displaystyle A = 0 \int_{0}^{1}{\frac{1}{{u}^{4}} du} + (-1)\int_{-1}^{0}{\frac{1}{{u}^{4}} du} = \boxed{\frac{1}{3}}

@Julian Poon Will you count this in as a correct solution?

Kartik Sharma - 5 years, 10 months ago

Log in to reply

Yes, in fact it's great!

Julian Poon - 5 years, 10 months ago

how you said that k =[a/b]

Sathyam Tripathi - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...