Modulo problems

Find the smallest prime number that divides 222 2 5555 + 555 5 2222 2222^{5555}+5555^{2222} .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Laurent Shorts
Apr 20, 2016

222 2 5555 2222^{5555} is even and 555 5 2222 5555^{2222} is odd, therefore their sum cannot be a multiple of 2.

222 2 5555 + 555 5 2222 ( 1 ) 5555 + ( 1 ) 2222 = 1 + 1 = 0 2222^{5555}+5555^{2222}\equiv (-1)^{5555}+(-1)^{2222}=-1+1=0 modulus 3, so it is a multiple of 3.


With a little help of a computer: 222 2 5555 + 555 5 2222 = 2222^{5555}+5555^{2222}= 3 × 7 × 1 1 2222 × 23 × 10 1 2222 × 5 657 × 153 319 × 340 169 × 1 182 611 × 14 287 057 × p i r i 3\times 7\times11^{2222}\times 23\times 101^{2222}\times 5\,657\times 153\,319\times 340\,169\times 1\,182\,611\times 14\,287\,057\times \prod p_i^{r_i} with all primes p i > 1 0 9 p_i>10^9 .

Nice explanation Laurent!

Pranshu Gaba - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...