Modulus ends at 1

Algebra Level 3

x 5 4 3 2 1 = 0 \LARGE \left| \left| \left| \left| \left| x-5 \right| -4 \right| -3 \right| -2 \right| -1 \right| = 0

How many solution we get for x x from this equation?

10 16 9 14 11 12

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Md Mehedi Hasan
Dec 8, 2017

x 5 4 3 2 1 = 0 x 5 4 3 2 = 1 x 5 4 3 2 = ± 1 x 5 4 3 = 2 ± 1 = 3 or 1 x 5 4 3 = ± 3 , ± 1 x 5 4 = 6 , 0 , 4 , 2 x 5 4 = ± 6 , 0 , ± 4 , ± 2 x 5 = 10 , 2 , 4 , 8 , 0 , 6 , 2 x 5 = ± 10 , ± 2 , ± 4 , ± 8 , 0 , ± 6 x = 15 , 5 , 7 , 3 , 9 , 1 , 13 , 3 , 5 , 11 , 1 The total solution is: 11 \large{ \left| \left| \left| \left| \left| x-5 \right| -4 \right| -3 \right| -2 \right| -1 \right| = 0\\ \left| \left| \left| \left| x-5 \right| -4 \right| -3 \right| -2 \right| =1\\ \left| \left| \left| x-5 \right| -4 \right| -3 \right| -2=\pm1\\ \left| \left| \left| x-5 \right| -4 \right| -3 \right| =2\pm1=3\text{ or }1\\ \left| \left| x-5 \right| -4 \right| -3 =\pm3,\pm1\\ \left| \left| x-5 \right| -4 \right| =6,0,4,2\\ \left| x-5 \right| -4=\pm6,0,\pm4,\pm2\\ \left| x-5 \right| =10,-2,4,8,0,6,2\\ x-5 = \pm10,\pm2,\pm4,\pm8,0,\pm6\\ x=15,-5,7,3,9,1,13,-3,5,11,-1\\ \text{The total solution is: } \boxed{11}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...