Modulus inequality

Algebra Level 3

x 2 2 x 1 1 0 \large \dfrac{|x - 2| - 2}{|x - 1| - 1} \leq 0

The values of x x satisfying the inequality above range from ( a , b ] (a,b] where a < b a < b .

Find a + b a+b .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ashish Menon
Sep 22, 2016

f ( x ) = { ( x 2 ) 2 ( x 1 ) 1 x 2 ( x 2 ) 2 ( x 1 ) 1 1 x < 2 ( x 2 ) 2 ( x 1 ) 1 x < 1 f(x) = \begin{cases}{\dfrac{(x - 2) - 2}{(x-1) - 1}} && {\forall\>x\>\geq\>2} \\ {\dfrac{-(x - 2) - 2}{(x - 1) - 1}} && {\forall\>1\>\leq\>x\><\>2} \\ {\dfrac{-(x - 2) - 2}{-(x - 1) - 1}} && {\forall\>x\><\>1}\end{cases}

Case 1:-
x 4 x 2 0 x ( 2 , 4 ] \begin{aligned} \dfrac{x - 4}{x - 2} & \leq 0\\ \\ \implies x & \in (2,4] \end{aligned}

Case 2:-
x x 2 0 x ( , 0 ] ( 2 , ) Bute this equation ia true only 1 x < 2 x ϕ \begin{aligned} \dfrac{x}{x - 2} \geq 0\\ \\ \implies x & \in (-\infty , 0] \cup (2 , \infty)\\ \\ \text{Bute this equation ia true only} \forall 1 \leq x < 2\\ \\ \therefore x & \in \phi \end{aligned}

Case 3:-
x x 0 1 0 , x 0 x ϕ \begin{aligned} \dfrac{x}{x} & \leq 0\\ \\ \implies 1 & \geq 0 , x \neq 0\\ \\ \implies x & \in \phi \end{aligned}

Therefore the final solution set is ( 2 , 4 ] (2,4] .
Thus, a + b = 2 + 4 = 6 a + b = 2 + 4 = \color{#3D99F6}{\boxed{6}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...