Demoive formula

Algebra Level pending

( 2 + i 5 2 i 5 ) 10 + ( 2 i 5 2 + i 5 ) 10 \left(\frac{2+i\sqrt{5}}{2-i\sqrt{5}}\right)^{10}+ \left(\frac{2-i\sqrt{5}}{2+i\sqrt{5}}\right)^{10}

Find the modulus of the complex number above.

2 cos ( 10 cos 1 2 3 ) 2\cos \left(10\cos^{-1} \frac{2}{3}\right) 2 cos ( 20 cos 1 2 3 ) 2\cos \left(20\cos^{-1} \frac{2}{3}\right) 2 sin ( 10 cos 1 2 3 ) 2\sin \left(10\cos^{-1} \frac{2}{3}\right) 2 sin ( 20 cos 1 2 3 ) 2\sin \left(20\cos^{-1} \frac{2}{3}\right)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 13, 2020

z = ( 2 + 5 i 2 5 i ) 10 + ( 2 5 i 2 + 5 i ) 10 = ( ( 2 + 5 i ) 2 9 ) 10 + ( ( 2 5 i ) 2 9 ) 10 = ( 1 + 4 5 i 9 ) 10 + ( 1 4 5 i 9 ) 10 = e 10 cos 1 ( 1 9 ) i + e 10 cos 1 ( 1 9 ) i By Euler’s formula: e θ i = cos θ + i sin θ = 2 cos ( 10 cos 1 ( 1 9 ) ) Since 2 cos 1 2 3 = cos 1 ( 1 9 ) = 2 cos ( 20 cos 1 2 3 ) \begin{aligned} z & = \left(\frac {2 + \sqrt 5 i}{2 - \sqrt 5 i} \right)^{10} + \left(\frac {2 - \sqrt 5 i}{2 + \sqrt 5 i} \right)^{10} \\ & = \left(\frac {(2 + \sqrt 5 i)^2}9 \right)^{10} + \left(\frac {(2 - \sqrt 5 i)^2}9 \right)^{10} \\ & = \left(\frac {-1 + 4\sqrt 5 i}9 \right)^{10} + \left(\frac {-1-4\sqrt5 i}9 \right)^{10} \\ & = \large e^{10\cos^{-1}\left(-\frac 19\right)i} + e^{-10 \cos^{-1}\left(-\frac 19\right)i} & \small \blue{\text{By Euler's formula: }e^{\theta i} = \cos \theta + i \sin \theta} \\ & = 2 \cos \left(10\cos^{-1}\left(-\frac 19\right)\right) & \small \blue{\text{Since }2 \cos^{-1} \frac 23 = \cos^{-1} \left(- \frac 19 \right)} \\ & = 2 \cos \left(20\cos^{-1}\frac 23 \right) \end{aligned}

Therefore, z = 2 cos ( 20 cos 1 2 3 ) |z| = \boxed{2 \cos \left(20\cos^{-1}\frac 23 \right)} .


Reference: Euler's formula

The given expression is

e i ( 20 tan 1 5 2 ) + e i ( 20 tan 1 5 2 ) e^{i(20\tan^{-1} \frac{\sqrt 5}{2})}+e^{-i(20\tan^{-1} \frac{\sqrt 5}{2})}

= 2 cos ( 20 tan 1 5 2 ) = 2 cos ( 20 cos 1 2 3 ) =2\cos (20\tan^{-1} \frac{\sqrt 5}{2})=\boxed {2\cos \left (20\cos^{-1} \frac{2}{3}\right )}

change t a n 1 ( 5 2 ) tan^{-1}\big(\frac{\sqrt{5}}{2} \big) into c o s 1 2 3 cos^{-1} \frac{2}{3}

A Former Brilliant Member - 1 year, 1 month ago

Log in to reply

Yeah. Edited.

A Former Brilliant Member - 1 year, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...