Modulus represents the distance from Origin.

Algebra Level 5

What is the maximum value of z |z| if z is a complex number satisfying z + 2 z = 2 |z+\dfrac{2}{z}|=2

Details :

\bullet If z = a + i . b z=a+i.b is a complex number with a , b R a,b \in R and i = 1 i=\sqrt{-1} , then z = a 2 + b 2 |z|=\sqrt{a^2+b^2}

\bullet Answer after rounding off up to 3 decimal places.

Try more problems involving the use of complex numbers


The answer is 2.732.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mvs Saketh
Nov 7, 2014

We know that from triangle inequality

z 2 z z + 2 z = 2 z + 2 z \left| z \right| -\left| \frac { 2 }{ z } \right| \le \left| z+\frac { 2 }{ z } \right| =2\le \left| z \right| +\left| \frac { 2 }{ z } \right|

Now the upper limit offers no useful result as it is always true by AM-GM

The lower limit however gives the quadratic z 2 z 2 = 0 z 2 2 z 2 = 0 \left| z \right| -\left| \frac { 2 }{ z } \right| -2=0\\ \left| z \right| ^{ 2 }-2\left| z \right| -2=0\\

whose positive root is 1 + 3 1+\sqrt { 3 }

(we neglect negative root as modulus cant be negative, and so no extrema can be found there)

That's it what the question was demanding. !

Sandeep Bhardwaj - 6 years, 7 months ago

Doesn't show bound achieved.

Richard Desper - 4 years, 6 months ago

Get a range of values not always means the extremas are actually achievable. 3 + 1 \sqrt{3} + 1 may or may not be achievable..

Vishal Yadav - 4 years, 2 months ago
Ayush Verma
Nov 6, 2014

l e t z = r e i θ z + 2 z = r e i θ + 2 r e i θ = ( r + 2 r ) c o s θ + i ( r 2 r ) s i n θ 4 = z + 2 z 2 = r 2 + 4 r 2 + 4 c o s 2 θ r 2 + 4 r 2 4 ( A . M G . M ) & c o s 2 θ [ 1 , 1 ] r 2 + 4 r 2 s h o u l d b e w i t h i n [ 4 , 8 ] t o s a t i s f y a b o v e e q n . G r a p h o f y = x 2 + 4 x 2 f o r x 0 w i l l b e d e c r e a s i n g i n ( 0 , 2 ) a n d i n c r e a s i n g i n ( 2 , ) . I t i s c l e a r f r o m a b o v e s t a t e m e n t t h a t r m a x w i l l b e g r e a t e r t h a n 2 s a t i s f y i n g , r 2 + 4 r 2 = 8 r 2 = 4 ± 2 3 r = ± ( 3 ± 1 ) r m a x = 3 + 1 = 2.732 let\quad z=r{ e }^{ i\theta }\quad \\ \\ \Rightarrow z+\cfrac { 2 }{ z } =r{ e }^{ i\theta }+\cfrac { 2 }{ r } { e }^{ -i\theta }=\left( r+\cfrac { 2 }{ r } \right) cos\theta +i\left( r-\cfrac { 2 }{ r } \right) sin\theta \\ \\ \Rightarrow { 4=\left| z+\cfrac { 2 }{ z } \right| }^{ 2 }={ r }^{ 2 }+\cfrac { 4 }{ { r }^{ 2 } } +4cos2\theta \\ \\ \because \quad { r }^{ 2 }+\cfrac { 4 }{ { r }^{ 2 } } \ge 4(A.M-G.M)\& \quad cos2\theta \in \left[ -1,1 \right] \\ \\ \therefore { r }^{ 2 }+\cfrac { 4 }{ { r }^{ 2 } } \quad should\quad be\quad within\quad [4,8]\quad to\quad satisfy\quad above\quad { eq }^{ n }.\\ \\ Graph\quad of\quad y=x^{ 2 }+\cfrac { 4 }{ { x }^{ 2 } } for\quad x\ge 0\quad will\quad be\quad decreasing\quad in\quad \\ \\ \left( 0,\sqrt { 2 } \right) \quad and\quad increasing\quad in\left( \sqrt { 2 } ,\infty \right) .\\ \\ It\quad is\quad clear\quad from\quad above\quad statement\quad that\quad { r }_{ max }\quad will\quad be\\ \\ greater\quad than\quad \sqrt { 2 } satisfying,\\ \\ { r }^{ 2 }+\cfrac { 4 }{ { r }^{ 2 } } =8\Rightarrow { r }^{ 2 }=4\pm 2\sqrt { 3 } \\ \\ \Rightarrow \quad { r }=\pm \left( \sqrt { 3 } \pm 1 \right) \Rightarrow { r }_{ max }=\sqrt { 3 } +1=2.732\\ \\

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...