Moe logs

Algebra Level 3

log a b = log b a \large \log_a b = \log_b a

Let a a and b b be distinct positive real numbers such that a 1 a\ne 1 , b 1 b\ne 1 and the equation above is fulfilled.

Find the value of a b ab .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Bloons Qoth
Sep 7, 2016

log a b = log b a \Large\log_a{b}=\log_b{a}

I hate logarithms \color{#FFFFFF}{\text{I hate logarithms}}

Let y = log a b = log b a a = b log a b b = a log b a a = b y b = a y b = ( b y ) y b = b y 2 1 = y 2 ( log a b ) 2 = 1 = ( log b a ) 2 ( log a b ) 2 = 1 = ( log b a ) 2 log a b = ± 1 = log b a \color{#EC7300}{y=\log_a{b}=\log_b{a}} \\ a=b^{\log_a{b}}\qquad b=a^{\log_b{a}} \\ a=\color{#3D99F6}{b^y}\qquad\quad\; b=\color{#3D99F6}{a}^y \\ b=(\color{#3D99F6}{b^y})^y \\ b=b^{y^2} \\ 1=\color{#EC7300}{y}^2 \\ \big(\log_a{b}\big)^2=1=\big(\log_b{a}\big)^2 \\ \sqrt{\big(\log_a{b}\big)^2=1=\big(\log_b{a}\big)^2} \\ \log_a{b}=\pm 1=\log_b{a}

I hate logarithms \color{#FFFFFF}{\text{I hate logarithms}}

Case 1: y = 1 log a b = 1 = log b a log a b = 1 log b a = 1 b = a a = b \color{#EC7300}{y}=1 \\ \log_a{b}=1=\log_b{a} \\ \log_a{b}=1\qquad\log_b{a}=1 \\ b=a\qquad\qquad a=b

\quad Obviously a contradiction, since a b a\neq b

I hate logarithms \color{#FFFFFF}{\text{I hate logarithms}}

Case 2: y = 1 log a b = 1 = log b a log a b = 1 log b a = 1 b = 1 a a = 1 b \color{#EC7300}{y}=-1 \\ \log_a{b}=-1=\log_b{a} \\ \log_a{b}=-1\qquad\log_b{a}=-1 \\ b=\dfrac{1}{a} \qquad\qquad\;\, a=\dfrac{1}{b}

I hate logarithms \color{#FFFFFF}{\text{I hate logarithms}}

Which implies a b = 1 \Large\color{#20A900}{ab=\boxed{1}}

Zee Ell
Sep 2, 2016

Let x = l o g a b ; a , b R + ; a 0 ; b 0 \text {Let } x = log_ab ; a, b \in \mathbb {R}^+ ; a ≠ 0 ; b ≠ 0

Then (due to the change of base theorem):

l o g a b = l o g b a x = 1 x x 2 = 1 x = ± 1 log_ab = log_ba \iff x = \frac {1}{x} \iff x^2 = 1 \iff x = ±1

Since a and b are distinct (a≠b, x≠1), therefore:

x = -1

l o g a b = 1 log_ab = -1

a = 1 b a = \frac {1}{b}

a b = 1 b × b = 1 ab = \frac {1}{b} × b = \boxed {1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...