Moment of Inertia of a cube (arbitrary axis)

Geometry Level pending

You have a cube of mass 1 1 kg, and side length 20 cm 20 \text{ cm} centered at the origin. Find its moment of inertia about an axis passing through the origin and having a direction vector d = ( 1 , 4 , 3 ) d = (1, 4, 3 ) . Report your answer in SI units.


The answer is 0.00666.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Karan Chatrath
May 25, 2020

Nice problem. Consider a point on the line along the given direction and passing through the origin:

r L = t ( i ^ + 4 j ^ + 3 k ^ ) \vec{r}_L = t\left(\hat{i} + 4 \ \hat{j} + 3 \ \hat{k}\right)

Any point within the cube is:

r P = x i ^ + y j ^ + z k ^ \vec{r}_P =x \ \hat{i} + y \ \hat{j} + z \ \hat{k}

Vector joining these two points is:

r D = r P r L \vec{r}_D = \vec{r}_P - \vec{r}_L

Since we consider perpendicular distances from the axis to compute moments of inertia, the vector r D \vec{r}_D must be perpendicular to the line:

r D ( i ^ + 4 j ^ + 3 k ^ ) \implies \vec{r}_D \cdot \left(\hat{i} + 4 \ \hat{j} + 3 \ \hat{k}\right)

This gives:

t = x 26 + 2 y 13 + 3 z 26 t = \frac{x}{26}+\frac{2\,y}{13}+\frac{3\,z}{26}

So finally, the vector r D \vec{r}_D in terms of x x , y y and z z is:

r D = ( 2 y 13 25 x 26 + 3 z 26 ) i ^ + ( 2 x 13 5 y 13 + 6 z 13 ) j ^ + ( 3 x 26 + 6 y 13 17 z 26 ) k ^ \vec{r}_D= \left(\frac{2\,y}{13}-\frac{25\,x}{26}+\frac{3\,z}{26}\right) \ \hat{i} + \left(\frac{2\,x}{13}-\frac{5\,y}{13}+\frac{6\,z}{13}\right) \ \hat{j} + \left(\frac{3\,x}{26}+\frac{6\,y}{13}-\frac{17\,z}{26}\right) \ \hat{k}

A volume mass element is:

d M = 1 0.2 × 0.2 × 0.2 d x d y d z dM = \frac{1}{0.2 \times 0.2 \times 0.2} \ dx \ dy \ dz d M = 125 d x d y d z \implies dM = 125 \ dx \ dy \ dz

The moment of inertia is therefore:

I = V r D 2 d M I = \int_{V} \lvert \vec{r}_D \rvert^2 dM I = 125 0.1 0.1 0.1 0.1 0.1 0.1 r D 2 d x d y d z I = 125\int_{-0.1}^{0.1} \int_{-0.1}^{0.1} \int_{-0.1}^{0.1} \lvert \vec{r}_D \rvert^2 \ dx \ dy \ dz

Leaving out further evaluations, the result comes out to be:

I = 1 150 0.006667 I = \frac{1}{150} \approx 0.006667

Steven Chase
May 25, 2020

Perform a triple integral over the cube interior. Determine the distance from each infinitesimal mass to the axis using the formula at this Wolfram Mathworld link . The formula for d 2 d^2 in terms of cross products near the end is particularly useful. The moment comes out to 0.006666 \approx 0.006666

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import math

Num = 400

M = 1.0
S = 0.2

V = S**3.0
rho = M/V

dx = S/Num
dy = dx
dz = dx

dV = dx*dy*dz
dm = rho*dV

#####################################

# Two points used in distance calcs

x1 = 0.0
y1 = 0.0
z1 = 0.0

x2 = 1.0
y2 = 4.0
z2 = 3.0

#####################################

I = 0.0

x = -S/2.0

while x <= S/2.0:

    y = -S/2.0

    while y <= S/2.0:

        z = -S/2.0

        while z <= S/2.0:

            v1x = x2 - x1
            v1y = y2 - y1
            v1z = z2 - z1

            v2x = x1 - x
            v2y = y1 - y
            v2z = z1 - z

            v1sq = v1x**2.0 + v1y**2.0 + v1z**2.0

            crossx = v1y*v2z - v1z*v2y
            crossy = -(v1x*v2z - v1z*v2x)
            crossz = v1x*v2y - v1y*v2x

            dsq = (crossx**2.0 + crossy**2.0 + crossz**2.0)/v1sq

            dI = dm*dsq

            I = I + dI

            z = z + dz

        y = y + dy

    x = x + dx

#####################################

print Num
print I

#>>> 
#100
#0.00666653846154
#>>> ================================ RESTART ================================
#>>> 
#200
#0.00666663461539
#>>>
#>>> 
#400
#0.00666665865385
#>>> 

Hosam Hajjir
May 25, 2020

Let the position vector of a point in the cube be r = [ x , y , z ] T r = [x, y, z]^T , and let the unit vector of the direction of the axis be n = 1 26 [ 1 , 4 , 3 ] n = \frac{1}{\sqrt{26}} [1, 4, 3] .

Then the required moment of inertia I I is defined by

I = ρ V u 2 d V I = \rho \displaystyle \int_V | u |^2 dV

where ρ \rho is the density of the cube, ρ = m V \rho = \dfrac{m}{V} , and u u is the vector perpendicular to n n from the point r r . Using the standard projection formula, we obtain,

u = ( I n n T ) r u =\ (I - n n^T ) r

Hence,

I = ρ V r T ( I n n T ) ( I n n T ) r d V = ρ V r T ( I n n T ) r d V I = \rho \displaystyle \int_V r^T (I - n n^T)(I - n n^T) r dV = \rho \int_V r^T (I - n n^T) r dV

Further, this becomes,

I = ρ V r T r r T n n T r d V = ρ V r T r n T r r T n d V = ρ V r T r d V ρ n T V r r T d V n I = \rho \displaystyle \int_V r^T r - r^T n n^T r dV = \rho \int_V r^T r - n^T r r^T n dV = \rho \int_V r^T r dV - \rho n^T \int_V r r^T dV n

Now r T r = x 2 + y 2 + z 2 r^T r = x^2 + y^2 + z^2

and

r r T = [ x 2 x y x z x y y 2 y z x z y z z 2 ] r r^T = \begin{bmatrix} x^2 && xy && xz \\ xy && y^2 && yz \\ xz && yz && z^2 \end{bmatrix}

From symmetry (about the origin), we have

V x 2 d V = V y 2 d V = V z 2 d V = 1 12 V a 2 = I 0 \displaystyle \int_V x^2 dV = \int_V y^2 dV = \int_V z^2 dV = \dfrac{1}{12} V a^2 = I_0

where a is the side length of the cube. The result in the last equation is straight forward to compute. In addition, we have, also from symmetry,

V x y d V = V x z d V = V y z d V = 0 \displaystyle \int_V xy dV = \int_V xz dV = \int_V yz dV = 0

Thus the moment integral boils down to,

I = ρ ( 3 I 0 I 0 n T n ) = 2 ρ I 0 = 1 6 m a 2 I = \rho ( 3 I_0 - I_0 n^T n ) = 2 \rho I_0 = \dfrac{1}{6} m a^2

Substituting m = 1 m = 1 and a = 0.2 a = 0.2 , gives I = 0.04 6 0.00666 I = \frac{0.04}{6} \approx \boxed{0.00666}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...