Moment of inertia of a solid ellipsoid

Classical Mechanics Level pending

The surface of a solid body is x 2 25 + y 2 16 + z 2 9 = 1 \dfrac{x^2}{25}+\dfrac{y^2}{16}+\dfrac{z^2}{9}=1 .

The mass of the body is 1 1 unit.

  1. Find the moment of inertia of the body about the z z -axis.
  2. From here, find the moment of inertia of a solid sphere of radius 5 5 units and mass 1 1 unit about one of its diameters.

Give your answer as the sum of the results obtained in (1) and (2).


The answer is 18.2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hosam Hajjir
May 23, 2020

Points of a solid ellipsoid satisfy the equation,

x 2 a 2 + y 2 b 2 + z 2 c 2 1 \dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} + \dfrac{z^2}{c^2} \le 1

We can parameterize these points as follows,

x = a r sin t cos s x = a r \sin t \cos s

y = b r sin t sin s y = b r \sin t \sin s

z = c r cos t z = c r \cos t

where 0 r 1 , 0 t π , 0 s 2 π 0 \le r \le 1 , 0 \le t \le \pi, 0 \le s \le 2 \pi .

The moment of inertia integral is

I = ρ V ( x 2 + y 2 ) d V I = \rho \displaystyle \int_V (x^2 + y^2) dV

In order to use the above parameterization, we have to first find the Jacobian J J ,

J = ( x , y , z ) ( r , t , s ) J = \dfrac{\partial(x, y, z)}{ \partial(r, t, s) }

= [ a sin t cos s a r cos t cos s a r sin t ( sin s ) b sin t sin s b r cos t sin s b r sin t cos s c cos t c r sin t 0 ] =\begin{bmatrix} a \sin t \cos s && a r \cos t \cos s && a r \sin t (-\sin s) \\ b \sin t \sin s && b r \cos t \sin s && b r \sin t \cos s \\ c \cos t && -c r \sin t && 0 \end{bmatrix}

Its determinant is, J = a b c r 2 sin t | J | = a b c r^2 \sin t

And the moment of inertia integral becomes,

I = ρ s = 0 2 π t = 0 π r = 0 r = 1 r 2 sin 2 t ( a 2 cos 2 s + b 2 sin 2 s ) J d r d t d s I = \rho \displaystyle \int_{s = 0}^{2 \pi} \int_{t = 0}^{\pi} \int_{r = 0}^{r = 1} r^2 \sin^2 t (a^2 \cos^2 s + b^2 \sin^2 s ) | J | dr \hspace{4pt} dt \hspace{4pt} ds

Integrating with respect to r r first, the integral reduces to,

I = 1 5 a b c ρ s = 0 2 π t = 0 π sin 3 t ( a 2 cos 2 s + b 2 sin 2 s ) d t d s I = \frac{1}{5} a b c \rho \displaystyle \int_{s = 0}^{2 \pi} \int_{t = 0}^{\pi} \sin^3 t ( a^2 \cos^2 s + b^2 \sin^2 s ) dt \hspace{4pt} ds

Next we'll integrate with respect to t t , and our integral reduces to,

I = 1 5 a b c ρ ( 4 3 ) s = 0 2 π ( a 2 cos 2 s + b 2 sin 2 s ) d s I = \frac{1}{5} abc \rho (\frac{4}{3}) \displaystyle \int_{s = 0}^{2 \pi} (a^2 \cos^2 s + b^2 \sin^2 s) ds

And finally, by integrating with respect to s s , we get,

I = 4 15 π . a b c ( a 2 + b 2 ) ρ I = \frac{4}{15} \pi . abc (a^2 + b^2) \rho

Now, the volume of the ellipsoid is V = 4 3 π a b c V = \frac{4}{3} \pi a b c , and its mass is m m , so

so ρ = m / V = 3 m 4 π a b c \rho = m/V = \dfrac{3 m}{4 \pi a b c} . Substituting this in the expression for I I ,

I = 1 5 m ( a 2 + b 2 ) I = \frac{1}{5} m (a^2 + b^2)

With m = 1 , a = 5 , b = 4 m = 1 , a = 5 , b = 4 , we get,

I = 1 5 ( 1 ) ( 25 + 16 ) = 41 5 = 8.2 I = \frac{1}{5} (1) (25 + 16 ) = \frac{41}{5} = 8.2

and for a sphere with m = 1 m = 1 and R = a = b = 5 R = a = b = 5

I = 1 5 ( 1 ) ( 25 + 25 ) = 10 I = \frac{1}{5} (1) (25 + 25 ) = 10

so that the sum of the I I 's = 8.2 + 10 = 18.2 = 8.2 + 10 = \boxed{18.2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...