Moment of Inertia of an Ellipsoid (Arbitrary Axis)

Geometry Level pending

Given a solid whose surface is the ellipsoid

x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} + \dfrac{z^2}{c^2} = 1

with a = 3 , b = 6 , c = 5 a = 3 , b = 6 , c = 5 . The mass of the ellipsoidal solid is 1 1 kg. Find its moment of inertia about an axis passing through the origin and having a direction vector d = ( 1 , 4 , 3 ) d = (1, 4, 3) .

Inspiration


The answer is 7.769.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Steven Chase
May 25, 2020

Perform a triple integral over the ellipsoid interior, with the limits of integration dictated by the ellipsoid geometry. Determine the distance from each infinitesimal mass to the axis using the formula at this Wolfram Mathworld link . The formula for d 2 d^2 in terms of cross products near the end is particularly useful.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
import math

Num = 1000

M = 1.0

a = 3.0
b = 6.0
c = 5.0

V = (4.0/3.0)*math.pi*a*b*c
rho = M/V

dx = 2.0*a/Num

#####################################

# Two points used in distance calcs

x1 = 0.0
y1 = 0.0
z1 = 0.0

x2 = 1.0
y2 = 4.0
z2 = 3.0

#####################################

I = 0.0

x = -a + dx

while x <= a - dx:

    right = 1.0 - (x/a)**2.0
    ymax = b*math.sqrt(right)

    dy = 2.0*ymax/Num

    y = -ymax + dy

    while y <= ymax - dy:

        right = 1.0 - (x/a)**2.0 - (y/b)**2.0
        zmax = c*math.sqrt(right)

        dz = 2.0*zmax/Num

        dm = rho*dx*dy*dz

        z = -zmax + dz

        while z <= zmax - dz:

            v1x = x2 - x1
            v1y = y2 - y1
            v1z = z2 - z1

            v2x = x1 - x
            v2y = y1 - y
            v2z = z1 - z

            v1sq = v1x**2.0 + v1y**2.0 + v1z**2.0

            crossx = v1y*v2z - v1z*v2y
            crossy = -(v1x*v2z - v1z*v2x)
            crossz = v1x*v2y - v1y*v2x

            dsq = (crossx**2.0 + crossy**2.0 + crossz**2.0)/v1sq

            dI = dm*dsq

            I = I + dI

            z = z + dz

        y = y + dy

    x = x + dx

#####################################

print Num
print I

#>>> 
#100
#7.52908475699

#>>> ================================ RESTART ================================
#>>> 
#200
#7.65190138196

#>>> ================================ RESTART ================================
#>>> 
#400
#7.71171460085

#>>>
#>>> 
#1000
#7.74687109529
#>>> 

Karan Chatrath
May 25, 2020

Consider a point on the line along the given direction and passing through the origin:

r L = t ( i ^ + 4 j ^ + 3 k ^ ) \vec{r}_L = t\left(\hat{i} + 4 \ \hat{j} + 3 \ \hat{k}\right)

Any point within the cube is:

r P = x i ^ + y j ^ + z k ^ \vec{r}_P =x \ \hat{i} + y \ \hat{j} + z \ \hat{k}

Vector joining these two points is:

r D = r P r L \vec{r}_D = \vec{r}_P - \vec{r}_L

Since we consider perpendicular distances from the axis to compute moments of inertia, the vector r D \vec{r}_D must be perpendicular to the line:

r D ( i ^ + 4 j ^ + 3 k ^ ) \implies \vec{r}_D \cdot \left(\hat{i} + 4 \ \hat{j} + 3 \ \hat{k}\right)

This gives:

t = x 26 + 2 y 13 + 3 z 26 t = \frac{x}{26}+\frac{2\,y}{13}+\frac{3\,z}{26}

So finally, the vector r D \vec{r}_D in terms of x x , y y and z z is:

r D = ( 2 y 13 25 x 26 + 3 z 26 ) i ^ + ( 2 x 13 5 y 13 + 6 z 13 ) j ^ + ( 3 x 26 + 6 y 13 17 z 26 ) k ^ \vec{r}_D= \left(\frac{2\,y}{13}-\frac{25\,x}{26}+\frac{3\,z}{26}\right) \ \hat{i} + \left(\frac{2\,x}{13}-\frac{5\,y}{13}+\frac{6\,z}{13}\right) \ \hat{j} + \left(\frac{3\,x}{26}+\frac{6\,y}{13}-\frac{17\,z}{26}\right) \ \hat{k}

A volume mass element is:

d M = 3 4 π a b c d x d y d z dM = \frac{3}{4 \pi a b c} \ dx \ dy \ dz d M = 1 120 π d x d y d z dM = \frac{1}{120 \pi } \ dx \ dy \ dz

The moment of inertia is therefore:

I = V r D 2 d M I = \int_{V} \lvert \vec{r}_D \rvert^2 dM I = 1 120 π 3 3 6 1 x 2 9 6 1 x 2 9 5 1 x 2 9 y 2 36 5 1 x 2 9 y 2 36 r D 2 d x d y d z I = \frac{1}{120 \pi }\int_{-3}^{3} \int_{-6\sqrt{1-\frac{x^2}{9}}}^{6\sqrt{1-\frac{x^2}{9}}} \int_{-5\sqrt{1-\frac{x^2}{9}-\frac{y^2}{36}}}^{5\sqrt{1-\frac{x^2}{9}-\frac{y^2}{36}}} \lvert \vec{r}_D \rvert^2 \ dx \ dy \ dz

Integral solved numerically:

I 7.7794 I \approx 7.7794

Hosam Hajjir
May 25, 2020

Let the position vector of a point in the ellipsoidal solid be r = [ x , y , z ] T r = [x, y, z]^T , and let the unit vector of the direction of the axis be n = d d = 1 26 [ 1 , 4 , 3 ] T n = \dfrac{d}{|d|}= \frac{1}{\sqrt{26}} [1, 4, 3]^T .

Then the required moment of inertia I I is defined by

I = ρ V u 2 d V I = \rho \displaystyle \int_V | u |^2 dV

where ρ \rho is the density of the cube, ρ = m V \rho = \dfrac{m}{V} , and u u is the vector perpendicular to n n from the point r r . Using the standard projection formula, we obtain,

u = ( I n n T ) r u =\ (I - n n^T ) r

Hence,

I = ρ V r T ( I n n T ) ( I n n T ) r d V = ρ V r T ( I n n T ) r d V I = \rho \displaystyle \int_V r^T (I - n n^T)(I - n n^T) r dV = \rho \int_V r^T (I - n n^T) r dV

Further, this becomes,

I = ρ V r T r r T n n T r d V = ρ V r T r n T r r T n d V = ρ V r T r d V ρ n T V r r T d V n I = \rho \displaystyle \int_V r^T r - r^T n n^T r dV = \rho \int_V r^T r - n^T r r^T n dV = \rho \int_V r^T r dV - \rho n^T \int_V r r^T dV n

Now r T r = x 2 + y 2 + z 2 r^T r = x^2 + y^2 + z^2

and

r r T = [ x 2 x y x z x y y 2 y z x z y z z 2 ] r r^T = \begin{bmatrix} x^2 && xy && xz \\ xy && y^2 && yz \\ xz && yz && z^2 \end{bmatrix}

It can be shown that,

V x 2 d V = 1 5 V a 2 = I 1 \displaystyle \int_V x^2 dV = \dfrac{1}{5} V a^2 = I_1

V y 2 d V = 1 5 V b 2 = I 2 \displaystyle \int_V y^2 dV = \dfrac{1}{5} V b^2 = I_2

V z 2 d V = 1 5 V c 2 = I 3 \displaystyle \int_V z^2 dV = \dfrac{1}{5} V c^2 = I_3

For a derivation of the formula in the last three equations, the reader is referred to my solution of this problem (Courtesy of @Alak Bhattacharya ) . In addition, we have, from symmetry,

V x y d V = V x z d V = V y z d V = 0 \displaystyle \int_V xy dV = \int_V xz dV = \int_V yz dV = 0

Thus the moment integral reduces to,

I = ρ ( I 1 + I 2 + I 3 n x 2 I 1 n y 2 I 2 n z 2 I 3 ) = 1 5 m ( ( 1 n x 2 ) a 2 + ( 1 n y 2 ) b 2 + ( 1 n z 2 ) c 2 ) I = \rho ( I_1 + I_2 + I_3 - n_x^2 I_1 - n_y^2 I_2 - n_z^2 I_3 ) = \frac{1}{5} m ( (1 - n_x^2) a^2 + (1 - n_y^2)b^2 + (1 - n_z^2) c^2 )

And, therefore, by substituting the given values of m = 1 , a = 3 , b = 6 , c = 5 m = 1, a = 3, b = 6, c = 5 and n x 2 = 1 26 , n y 2 = 16 26 , n z 2 = 9 26 n_x^2 = \frac{1}{26} , n_y^2 = \frac{16}{26} , n_z^2 = \frac{9}{26} , and simplifying the fraction, we get

I = 101 13 7.769 I = \frac{101}{13} \approx \boxed{7.769}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...