A solid sphere has a radius of 1 unit. The sphere parametrization is:
x = r c o s θ s i n ϕ y = r s i n θ s i n ϕ z = r c o s ϕ 0 ≤ r ≤ 1 0 ≤ θ ≤ 2 π 0 ≤ ϕ ≤ π
The volume-mass-density is as follows:
ρ = r θ
The moment of inertia about the z -axis can be expressed as:
I = b a π 2
If a and b are coprime positive integers, determine a + b
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
matrix = FullSimplify ⎣ ⎡ Block ⎣ ⎡ { x , y , z } , x = r cos ( θ ) sin ( ϕ ) ; y = r sin ( θ ) sin ( ϕ ) ; z = r cos ( ϕ ) ; ⎝ ⎛ y 2 + z 2 x ( − y ) x ( − z ) − x y x 2 + z 2 y ( − z ) − x z − y z x 2 + y 2 ⎠ ⎞ ⎦ ⎤ ⎦ ⎤ ⇒ ⎝ ⎛ r 2 ( cos 2 ( ϕ ) + sin 2 ( θ ) sin 2 ( ϕ ) ) − r 2 cos ( θ ) sin ( θ ) sin 2 ( ϕ ) − r 2 cos ( θ ) cos ( ϕ ) sin ( ϕ ) − r 2 cos ( θ ) sin ( θ ) sin 2 ( ϕ ) r 2 ( cos 2 ( ϕ ) + cos 2 ( θ ) sin 2 ( ϕ ) ) − r 2 cos ( ϕ ) sin ( θ ) sin ( ϕ ) − r 2 cos ( θ ) cos ( ϕ ) sin ( ϕ ) − r 2 cos ( ϕ ) sin ( θ ) sin ( ϕ ) r 2 sin 2 ( ϕ ) ⎠ ⎞
jacobian = CoordinateTransformData [ Spherical → Cartesian , MappingJacobianDeterminant ] [ { r , ϕ , θ } ]
inertiaMatrix = ∫ 0 π ( ∫ 0 2 π ( ∫ 0 1 jacobian matrix ( θ r ) d r ) d θ ) d ϕ ⇒ ⎝ ⎜ ⎛ 9 4 π 2 9 π 0 9 π 9 4 π 2 0 0 0 9 4 π 2 ⎠ ⎟ ⎞
Eigensystem [ inertiaMatrix ] ⇒ ( 9 1 π ( 1 + 4 π ) { 1 , 1 , 0 } 9 4 π 2 { 0 , 0 , 1 } 9 1 π ( − 1 + 4 π ) { − 1 , 1 , 0 } )
Since the z axis is one of the principal axes of the object, it was easy to read out the moment of inertia.
Problem Loading...
Note Loading...
Set Loading...
x = r c o s θ s i n ϕ y = r s i n θ s i n ϕ z = r c o s ϕ 0 ≤ r ≤ 1 0 ≤ θ ≤ 2 π 0 ≤ ϕ ≤ π
Volume element:
d V = r 2 s i n ϕ d r d θ d ϕ
Differential mass:
d m = ρ d V = r 3 θ s i n ϕ d r d θ d ϕ
Distance from z-axis:
R 2 = x 2 + y 2 = r 2 s i n 2 ϕ
Contribution to moment:
d I = d m R 2 = r 5 θ s i n 3 ϕ d r d θ d ϕ
Total moment:
I = ∫ 0 1 r 5 d r ∫ 0 2 π θ d θ ∫ 0 π s i n 3 ϕ d ϕ = 6 1 2 π 2 3 4 = 9 4 π 2