Monster!

Level 2

Evaluate this deadly limit

lim x 0 + 2 sin x 2 + x 3 + ln ( 1 + x ) x + x x \large \displaystyle \lim_{x \to 0^+ } \frac {2 \sin \sqrt{x^2 + \sqrt{x^3}} +\ln (1+x)}{x + \sqrt{x \sqrt{x}} }


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Pi Han Goh
Dec 24, 2013

For small x x , sin ( x ) x \sin(x) \approx x , and ln ( 1 + x ) x \ln (1+x) \approx x

2 x 2 + x 3 / 2 + x x + x 3 / 4 = 2 x 3 / 4 x 1 / 2 + 1 + x x + x 3 / 4 \large \frac { 2 \sqrt {x^2 + x^{3/2}} + x }{x + x^{3/4} } = \frac { 2 x^{3/4} \sqrt {x^{1/2} + 1} + x }{x + x^{3/4} }

Divide numerator and denominator by x 3 / 4 x^{3/4}

= 2 x 1 / 2 + 1 + x 1 / 4 x 1 / 4 + 1 \large = \frac { 2 \sqrt {x^{1/2} + 1} + x^{1/4} }{x^{1/4} + 1 }

Set x x approaches 0 0 from the right

= 2 0 + 1 + 0 0 + 1 = 2 \large = \frac { 2 \sqrt {0+1} + 0 }{0 + 1} = \boxed{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...