Monstrous logarithm integral

Calculus Level 5

I ( a ) = 0 ln ( x 2 + 1 ) x 2 ( x 2 + a ) d x I(a) = \int_0^\infty \frac {\ln(x^2+1)}{x^2(x^2+a)} dx

Define I ( a ) I(a) as above, where a > 0 a >0 . Then

I ( 1 ) + I ( 2 ) = π x 4 ( x 1 x 3 x 1 ln ( x 1 + x 2 ) x 1 2 ln ( x 1 ) ) I(1) + I(2) = \frac \pi {x_4}\left(x_1\cdot x_3 - \sqrt{x_1} \ln \left(\sqrt{x_1} + x_2 \right) - x_1^2 \ln \left(x_1\right) \right)

where x 1 x_1 , x 2 x_2 , x 3 x_3 , and x 4 x_4 are positive integers. Find x 1 + x 2 + x 3 + x 4 x_1+x_2+x_3+x_4 .

17 71 5 12 32 18 10

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Similar solution as @Henri Kärpijoki 's, presented as follows:

Using differentiation under the integration sign , define I ( a , t ) I(a,t) as follows:

I ( a , t ) = 0 ln ( t x 2 + 1 ) x 2 ( x 2 + a ) d x I ( a , t ) t = 0 1 ( x 2 + a ) ( t x 2 + 1 ) d x = 1 1 a t 0 ( 1 x 2 + a t t x 2 + 1 ) d x = 1 1 a t [ tan 1 ( x a ) a t tan 1 ( t x ) ] 0 = π ( 1 a t ) 2 a ( 1 a t ) = π 2 a ( 1 + a t ) Since 1 a t = ( 1 a t ) ( 1 + a t ) I ( a , t ) = π 2 a ( 1 + a t ) d t Let u 2 = a t 2 u d u = a d t = π a a u 1 + u d u = π a a ( 1 1 1 + u ) d u = π ( u ln ( 1 + u ) ) a a + C where C is the constant of integration. = π ( a t ln ( 1 + a t ) ) a a Since I ( a , 0 ) = 0 C = 0 I ( a ) = π ( a ln ( 1 + a ) ) a a Putting t = 1 \begin{aligned} I(a,t) & = \int_0^\infty \frac {\ln(tx^2 +1)}{x^2(x^2+a)} dx \\ \frac {\partial I(a,t)}{\partial t} & = \int_0^\infty \frac 1{(x^2+a)(tx^2+1)} dx \\ & = \frac 1{1-at} \int_0^\infty \left(\frac 1{x^2+a} - \frac t{tx^2+1} \right) dx \\ & = \frac 1{1-at} \left[\frac {\tan^{-1} \left(\frac x{\sqrt a}\right)}{\sqrt a} - \sqrt t \tan^{-1} \left(\sqrt t x \right) \right]_0^\infty \\ & = \frac {\pi\left(1-\sqrt{at}\right)}{2\sqrt a(1-at)} = \frac \pi{2\sqrt a(1+\sqrt{at})} & \small \blue{\text{Since }1-at = (1-\sqrt{at})(1+\sqrt{at})} \\ \implies I(a,t) & = \int \frac \pi{2\sqrt a(1+\sqrt{at})} \ dt & \small \blue{\text{Let }u^2 = at \implies 2u\ du = a\ dt} \\ & = \frac \pi{a\sqrt a} \int \frac u{1+u}du = \frac \pi{a\sqrt a} \int \left(1-\frac 1{1+u}\right) du \\ & = \frac {\pi (u-\ln (1+u))}{a\sqrt a} + \blue C & \small \blue{\text{where }C \text{ is the constant of integration.}} \\ & = \frac {\pi (\sqrt{at}-\ln (1+\sqrt{at}))}{a\sqrt a} & \small \blue{\text{Since }I(a,0) = 0 \implies C = 0} \\ \implies I(a) & = \frac {\pi (\sqrt a-\ln (1+\sqrt a))}{a\sqrt a} & \small \blue{\text{Putting }t=1} \end{aligned}

Therefore,

I ( 1 ) + I ( 2 ) = π ( 1 ln 2 ) + π 2 2 ( 2 ln ( 2 + 1 ) ) = π 4 ( 6 2 ln ( 2 + 1 ) 4 ln 2 ) \begin{aligned} I(1) + I(2) & = \pi(1-\ln 2) + \frac \pi{2\sqrt 2}\left(\sqrt 2 - \ln \left(\sqrt 2 + 1\right) \right) \\ & = \frac \pi 4 \left(6-\sqrt 2 \ln \left(\sqrt 2 + 1\right) - 4\ln 2 \right) \end{aligned}

Then we have x 1 + x 2 + x 3 + x 4 = 2 + 1 + 3 + 4 = 10 x_1 + x_2 + x_3 + x_4 = 2 + 1 + 3 + 4 = \boxed{10} .

Wow....so simple.

Kumudesh Ghosh - 1 year, 2 months ago

Log in to reply

This method was invented by Prof Richard Feynman.

Chew-Seong Cheong - 1 year, 2 months ago

Wow..its great.The best thing is how such a complex problem wields a simple answer!

Kumudesh Ghosh - 1 year, 2 months ago

The solution was good. Can you tell me how did you decide where to assume the second variable t?

Devendra Goyal - 1 year ago

Log in to reply

It is a trick used in [differentiation under the integration sign}(https://brilliant.org/wiki/differentiate-through-the-integral/). Basically try and error and based on experience.

Chew-Seong Cheong - 1 year ago

Log in to reply

Ok I'll check. Thanks

Devendra Goyal - 1 year ago
Henri Kärpijoki
Apr 9, 2020

I ( a ) = 0 ln ( x 2 + 1 ) x 2 ( x 2 + a ) d x \ I\left(a\right)=\int_0^{\infty}\frac{\ln\left(x^2+1\right)}{x^2\left(x^2+a\right)}dx

Let's define a new integral:

I ( a , t ) = 0 ln ( t x 2 + 1 ) x 2 ( x 2 + a ) d x I\left(a{,}t\right)=\int_0^{\infty}\frac{\ln\left(tx^2+1\right)}{x^2\left(x^2+a\right)}dx

Let's use differentiation under the integral sign

d d t I ( a , t ) = d d t 0 ln ( t x 2 + 1 ) x 2 ( x 2 + a ) d x = 0 t ln ( t x 2 + 1 ) x 2 ( x 2 + a ) d x = 0 1 t x 2 + 1 1 x 2 + a d x \Rightarrow\frac{d}{dt}I\left(a{,}t\right)=\frac{d}{dt}\int_0^{\infty}\frac{\ln\left(tx^2+1\right)}{x^2\left(x^2+a\right)}dx=\int_0^{\infty}\frac{\partial}{\partial t}\frac{\ln\left(tx^2+1\right)}{x^2\left(x^2+a\right)}dx=\int_0^{\infty}\frac{1}{tx^2+1}\cdot\frac{1}{x^2+a}\ dx

Then we have to use partial fraction decomposition and get integral in the form:

d d t I ( a , t ) = 0 t a t 1 1 ( x t ) 2 + 1 1 a t 1 1 x 2 + a d x \frac{d}{dt}I\left(a{,}t\right)=\int_0^{\infty}\frac{t}{at-1}\cdot\frac{1}{\left(x\sqrt{t}\right)^2+1}-\frac{1}{at-1}\cdot\frac{1}{x^2+a}\ dx

Let's use the integration formula 1 ( a x ) 2 + 1 d x = 1 a arctan ( a x ) + C \int_{ }^{ }\frac{1}{\left(ax\right)^2+1}dx=\frac{1}{a}\arctan\left(ax\right)+C

Then we are going to end up with

d d t I ( a , t ) = t a t 1 π 2 t 1 a t 1 π 2 a \frac{d}{dt}I\left(a{,}t\right)=\frac{t}{at-1}\cdot\frac{\pi}{2\sqrt{t}}-\frac{1}{at-1}\cdot\frac{\pi}{2\sqrt{a}}

We notice that I ( a , 0 ) = 0 I ( a , 1 ) = I ( a ) I\left(a{,}0\right)=0\wedge I\left(a{,}1\right)=I\left(a\right)

0 1 d d t I ( a , t ) d t = I ( a , 1 ) = I ( a ) = π 2 0 1 t a t 1 1 t 1 a t 1 1 a d t \int_0^1\frac{d}{dt}I\left(a{,}t\right)\ dt=I\left(a{,}1\right)=I\left(a\right)=\frac{\pi}{2}\int_0^1\frac{t}{at-1}\cdot\frac{1}{\sqrt{t}}-\frac{1}{at-1}\cdot\frac{1}{\sqrt{a}}\ dt

Solving this trivial integral (you can use u sub to solve both integrals) we are going to end up with

I ( a ) = π a 3 2 ( a ln ( a + 1 ) ) I\left(a\right)=\pi\cdot a^{-\frac{3}{2}}\left(\sqrt{a}-\ln\left(\sqrt{a}+1\right)\right)

Then we calculate the sum of the first two values:

I ( 1 ) = π 1 3 2 ( 1 ln ( 1 + 1 ) ) = π ( 1 ln ( 2 ) ) I\left(1\right)=\pi\cdot1^{-\frac{3}{2}}\cdot\left(\sqrt{1}-\ln\left(\sqrt{1}+1\right)\right)=\pi\cdot\left(1-\ln\left(2\right)\right)

I ( 2 ) = π 2 3 2 ( 2 ln ( 2 + 1 ) ) = π 2 2 ( 2 ln ( 2 + 1 ) ) I\left(2\right)=\pi\cdot2^{-\frac{3}{2}}\cdot\left(\sqrt{2}-\ln\left(\sqrt{2}+1\right)\right)=\frac{\pi}{2\sqrt{2}}\left(\sqrt{2}-\ln\left(\sqrt{2}+1\right)\right)

I ( 1 ) + I ( 2 ) = π ( 1 ln ( 2 ) ) + π 2 2 ( 2 ln ( 2 + 1 ) ) I\left(1\right)+I\left(2\right)=\pi\cdot\left(1-\ln\left(2\right)\right)+\frac{\pi}{2\sqrt{2}}\left(\sqrt{2}-\ln\left(\sqrt{2}+1\right)\right)

= π 4 ( 6 4 ln ( 2 ) 2 ln ( 2 + 1 ) ) = π 4 ( 2 ln ( 2 + 1 ) + 4 ln ( 2 ) 6 ) =\frac{\pi}{4}\left(6-4\ln\left(2\right)-\sqrt{2}\ln\left(\sqrt{2}+1\right)\right)=-\frac{\pi}{4}\left(\sqrt{2}\ln\left(\sqrt{2}+1\right)+4\ln\left(2\right)-6\right)

= ( 2 ln ( 2 + 1 ) + 2 2 ln ( 2 ) 3 2 ) π 4 =-\left(\sqrt{2}\cdot\ln\left(\sqrt{2}+1\right)+2^2\cdot\ln\left(2\right)-3\cdot2\right)\cdot\frac{\pi}{4}

Finally, we get

x 1 = 2 x 2 = 1 x 3 = 3 x 4 = 4 1 i 4 x i = 10 \Rightarrow x_1=2\wedge x_2=1\wedge x_3=3\wedge x_4=4\Rightarrow\sum_{1\le i\le4}^{ }x_i=10

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...