More and more integration

Calculus Level 4

1 3 ( tan 1 ( x x 2 + 1 ) + tan 1 ( x 2 + 1 x ) ) d x \displaystyle \int_{-1}^{3} \left(\tan^{-1}\left(\dfrac{x}{x^{2}+1}\right) +\tan^{-1}\left(\dfrac{x^{2}+1}{x}\right) \right) \, dx

If the integral above can be expressed as m π m \pi , find m m .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Humberto Bento
Dec 15, 2014

Set a = t g ( α ) a=tg(\alpha ) Then 1 a = c o t g ( α ) = t g ( π 2 α ) \frac{1}{a}=cotg(\alpha )=tg(\frac{\pi }{2}-\alpha ) , if a>0 Or 1 a = c o t g ( α ) = t g ( α π 2 ) \frac{1}{a}=cotg(\alpha )=tg(\alpha-\frac{\pi }{2} ) , if a<0

Therefore, tan 1 ( a ) + tan 1 ( 1 a ) = π 2 × s i g n ( a ) {{\tan }^{-1}}(a)+{{\tan }^{-1}}(\frac{1}{a})=\frac{\pi }{2}\times sign(a) . The integral becomes the sum of the integral for x negative and x positive: 1 0 π 2 d x + 0 3 π 2 d x = π \int\limits_{-1}^{0}{-\frac{\pi }{2}dx}+\int\limits_{0}^{3}{\frac{\pi }{2}dx}=\pi

. .
Feb 25, 2021

1 3 ( tan 1 ( x x 2 + 1 ) + tan 1 ( x 2 + 1 x ) ) d x = π m = 1 . \displaystyle \int ^ { 3 } _ { -1 } ( \tan ^ { -1 } ( \frac { x } { x ^ { 2 } + 1 } ) + \tan ^ { -1 } ( \frac { x ^ { 2 } + 1 } { x } ) ) dx = \pi \rightarrow m = \boxed { 1 } .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...