More arithmetic progression

Algebra Level 1

What is the sum of all the whole numbers from 1 to 200?


The answer is 20100.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

We can directly apply the formula , S n = n ( n + 1 ) 2 S_{n} = \frac{n(n+1)}{2} or we can do it the old fashioned way, S = 1 + 2 + 3 + . . . . . 200 ( i ) S = 1+2+3+.....200 \rightarrow (i) S = 200 + 199 + 198 + . . . . . . + 1 ( i i ) S = 200+199 +198 +......+1 \rightarrow (ii) ( i ) + ( i i ) , (i)+(ii), 2 S = 201 + 201 + 201 + . . . . . 201 (200 times) 2 S = 201 × 200 2S = 201 + 201 +201 +..... 201 \text {(200 times)} \Rightarrow 2S = 201 \times 200 S = 200 × 201 2 20100 \Rightarrow S = \frac{200 \times 201}{2} \Rightarrow \boxed {20100}

A = 1 + 2 + 3 + + 200 A=1+2+3+\ldots+200

2 A = 201 + 201 + 201 + + 201 = 201 × 200 2A=201+201+201+\ldots+201 = 201\times200

A = 201 × 200 2 = 20100 \Rightarrow A=\frac{201\times200}{2}=\boxed{20100}

Sam Evans
Aug 14, 2015

(200+1 divided by 2) then 200 multiplied by (100.5) =20100

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...