More Circles and Squares !

Level pending

In A B C D \square{ABCD} , the circle with center O O passes through vertices A A and D D and is tangent to B C BC at E E .

Let A A be the total area of the red shaded regions.

Find A A B C D A \dfrac{A_{\square{ABCD}}}{A} .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Apr 29, 2020

Let 2 z 2z be the length of a side of square base A B C D ABCD and let A : ( 0 , 0 ) , B : ( 0 , 2 z ) , A:(0,0), B:(0,2z),

C : ( 2 z , 2 z ) , D : ( 2 z , 0 ) C:(2z,2z), D:(2z,0) and E : ( z , 2 z ) E:(z,2z) and O : ( x , y ) O:(x,y) .

( 1 ) : ( x z ) 2 + ( y 2 z ) 2 = r 2 (1): (x - z)^2 + (y - 2z)^2 = r^2

( 2 ) : x 2 + y 2 = r 2 (2): x^2 + y^2 = r^2

( 3 ) : ( x 2 z ) 2 + y 2 = r 2 (3): (x - 2z)^2 + y^2 = r^2

Subtracting ( 2 ) (2) from ( 1 ) 2 z x + 4 z y = 5 z 2 (1) \implies 2zx + 4zy = 5z^2

and

Subtracting ( 2 ) (2) from ( 3 ) 4 z ( z x ) = 0 (3) \implies 4z(z - x) = 0 and z 0 x = z z \neq 0 \implies x =z \implies

y = 3 4 z r = 5 4 z y = \dfrac{3}{4}z \implies r = \dfrac{5}{4}z \implies the equation of the circle is

( x z ) 2 + ( y 3 4 z ) 2 = 25 16 z 2 (x - z)^2 + (y - \dfrac{3}{4}z)^2 = \dfrac{25}{16}z^2 \implies

y = 25 16 z 2 ( x z ) 2 + 3 4 z y = \sqrt{\dfrac{25}{16}z^2 - (x - z)^2} + \dfrac{3}{4}z which is the portion of the circle needed to obtain the above area.

The area I 1 = 2 0 z 2 z ( 25 16 z 2 ( x z ) 2 + 3 4 z ) d z = I_{1} = 2\displaystyle\int_{0}^{z} 2z - ( \sqrt{\dfrac{25}{16}z^2 - (x - z)^2} + \dfrac{3}{4}z) \:\ dz =

2 0 z 5 4 z 25 16 z 2 ( x z ) 2 d z 2\displaystyle\int_{0}^{z} \dfrac{5}{4}z -\sqrt{\dfrac{25}{16}z^2 - (x - z)^2} \:\ dz

Let x z = 5 4 z sin ( θ ) d x = 5 4 z cos ( θ ) d θ x - z = \dfrac{5}{4}z\sin(\theta) \implies dx = \dfrac{5}{4}z\cos(\theta) d\theta \implies

I 1 = 2 ( 5 4 z 2 25 z 2 32 ( arcsin ( 4 ( x z ) 5 z ) + 4 ( x z ) 25 z 2 16 ( x z ) 2 25 z 2 ) 0 z ) I_{1} = 2(\dfrac{5}{4}z^2 - \dfrac{25z^2}{32}(\arcsin(\dfrac{4(x - z)}{5z}) + \dfrac{4(x - z)\sqrt{25z^2 - 16(x - z)^2}}{25z^2})|_{0}^{z})

= 2 ( 5 4 25 32 arcsin ( 4 5 ) 3 8 ) z 2 = = 2(\dfrac{5}{4} - \dfrac{25}{32}\arcsin(\dfrac{4}{5}) - \dfrac{3}{8})z^2 = ( 5 2 25 16 arcsin ( 4 5 ) 3 4 ) z 2 (\dfrac{5}{2} - \dfrac{25}{16}\arcsin(\dfrac{4}{5}) - \dfrac{3}{4})z^2

I 2 = 2 0 z 25 16 z 2 ( x z ) 2 3 4 z d x I_{2} = 2\displaystyle\int_{0}^{z} \sqrt{\dfrac{25}{16}z^2 - (x - z)^2} - \dfrac{3}{4}z \:\ dx

Letting x z = 5 4 z sin ( θ ) d x = 5 4 z cos ( θ ) d θ x - z = \dfrac{5}{4}z\sin(\theta) \implies dx = \dfrac{5}{4}z\cos(\theta) d\theta \implies

I 2 = ( 25 16 arcsin ( 4 5 ) 3 4 ) z 2 I_{2} = (\dfrac{25}{16}\arcsin(\dfrac{4}{5}) - \dfrac{3}{4})z^2

\implies the total area A = I 1 + I 2 = z 2 A A B C D A = 4 A = I_{1} + I_{2} = z^2 \implies \dfrac{A_{\square{ABCD}}}{A} = \boxed{4}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...