More Complex Than it Seems!

Algebra Level 5

r = 0 4 ( 4 r ) b 4 r c r cos [ r B ( 4 r ) C ] \large\sum_{r=0}^4 \dbinom4r b^{4-r} c^r \cos [ rB - (4-r)C ]

Let a , b a,b and c c denote the sides of a triangle opposite to the angles A , B A,B and C C respectively.

Compute the value of the summation above, where a = 5 , b = 12 a=5,b=12 and c = 13 c=13 .


The answer is 625.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Somyaneel Sinha
Feb 11, 2016

Let S= r = 0 4 ( 4 C r ) b 4 r c r cos ( r B ( 4 r ) C ) \sum_{r=0}^4 (^4C_r) b^{4-r} c^{r} \cos\ (rB-(4-r)C)

and T= r = 0 4 ( 4 C r ) b 4 r c r sin ( r B ( 4 r ) C ) \sum_{r=0}^4 (^4C_r) b^{4-r} c^{r} \sin\ (rB-(4-r)C)

then S + iT= r = 0 4 ( 4 C r ) b 4 r c r e i ( r B ( 4 r ) C ) \sum_{r=0}^4 (^4C_r) b^{4-r} c^{r} e^{i(rB-(4-r)C)}

=> S+iT= ( c e i B + b e i C ) 4 (ce^{iB} + be^{-iC})^{4}

=> S+iT= ( ( c cos B + b cos C ) + i ( c sin B b sin C ) ) 4 ((c \cos\ B + b \cos\ C)+ i(c \sin\ B - b \sin\ C))^{4}

since according to sine rule c sin C \frac{c}{\sin\ C} = b sin B \frac{b}{\sin\ B} => ( c sin B b sin C ) (c \sin\ B - b \sin\ C) =0

=> T=0 whereas S= a 4 a^{4} [ using Projection formula]

=> S= 5 4 5^{4} = 625

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...