(1): Using find the conic that passes thru the points and .
(2): Find the circle that passes thru the points and .
Find the area of the region(s) bounded by the conic in (1) and the circle in (2) to seven decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
For the conic:
( 5 , 4 ) : 2 5 a + 1 0 0 b + 1 6 c + 5 d + 4 e = − 2 8 8
( − 5 , 4 ) : 2 5 a − 1 0 0 b + 1 6 c − 5 d + 4 e = − 2 8 8
( 3 , 0 ) : 9 a + 3 d = − 2 8 8
( − 3 , 0 ) : 9 a − 3 d = − 2 8 8
( 0 , − 4 ) : 4 c − e = − 7 2
⟹ d = b = 0 , a = − 3 2 , c = 7 and e = 1 0 0
⟹ − 3 2 x 2 + 7 y 2 + 1 0 0 y = − 2 8 8 which is a hyperbola since b 2 − 4 a c < 0 .
Solving for y we obtain:
y = 7 2 ( ± 1 2 1 + 5 6 x 2 − 2 5 ) .
For region R 1 : y 1 ( x ) = 7 2 ( 1 2 1 + 5 6 x 2 − 2 5 ) , where y ≥ − 4 .
For region R 2 : y 1 ∗ ( x ) = 7 2 ( − 1 2 1 + 5 6 x 2 − 2 5 ) , where y ≤ − 7 1 2 .
For circle:
(1) ( 5 , 4 ) : 2 5 − 1 0 a + a 2 + 1 6 − 8 b + b 2 = r 2
(2) ( 5 , 4 ) : 2 5 + 1 0 a + a 2 + 1 6 + 8 b + b 2 = r 2
Subtracting (2) from (1) ⟹ a = 0 .
(3) ( − 1 0 , − 5 ) : 1 2 5 + 1 0 b + b 2 = r 2
(1) 4 1 − 8 b + b 2 = r 2
Subtracting (1) from (3) ⟹ b = − 3 1 4
⟹ r 2 = 9 9 0 1 ⟹ x 2 + ( y + 3 1 4 ) 2 = 9 9 0 1
Solving for y we obtain:
y = 3 1 ( ± 9 0 1 − 9 x 2 − 1 4 )
For region R 1 : y 2 ( x ) = 3 1 ( 9 0 1 − 9 x 2 − 1 4 ) above the line y = − 3 1 4 .
For region R 2 : y 2 ∗ ( x ) = 3 1 ( − 9 0 1 − 9 x 2 − 1 4 ) below the line y = − 3 1 4 .
For region R 1 : A 1 = ∫ − 5 5 y 2 ( x ) − y 1 ( x ) d x .
Let I 1 = ∫ − 5 5 y 2 ( x )
For 3 1 ∫ − 5 5 9 0 1 − 9 x 2 d x :
Let 3 x = 9 0 1 sin ( θ ) ⟹ d x = 3 9 0 1 cos ( θ ) d θ ⟹
∫ − 5 5 9 0 1 − 9 x 2 d x = 9 9 0 1 ( arcsin ( 9 0 1 3 x ) + 9 0 1 3 x 9 0 1 − 9 x 2 ) ∣ − 5 5 = 9 9 0 1 arcsin ( 9 0 1 1 5 ) + 3 1 3 0
⟹ I 1 = ∫ − 5 5 y 2 ( x ) d x = 9 9 0 1 arcsin ( 9 0 1 1 5 ) − 3 1 0 ≈ 4 9 . 0 5 2 6 4 0 9 .
Let I 2 = ∫ − 5 5 y 1 ( x ) d x .
For 7 2 ∫ − 5 5 1 2 1 + 5 6 x 2 d x
Let 5 6 x = 1 1 tan ( θ ) ⟹ d x = 5 6 1 1 sec 2 ( θ ) ⟹
7 2 ∫ 1 2 1 + 5 6 x 2 d x = 7 5 6 2 4 2 ∫ sec 3 ( θ ) d θ .
Let u = sec ( θ ) , d u = sec ( θ ) tan ( θ ) d θ , d v = sec 2 ( θ ) d θ , v = tan ( θ ) ⟹
∫ sec 2 ( θ ) d θ = 2 1 ( sec ( θ ) tan ( θ ) + ln ∣ sec ( θ ) + tan ( θ ) ) ∣ )
⟹ 7 2 ∫ − 5 5 1 2 1 + 5 6 x 2 d x = 7 5 6 1 2 1 ( 1 2 1 5 6 x 1 2 1 + 5 6 x 2 + ln ( 1 1 1 2 1 + 5 6 x 2 + 5 6 x ) ) ∣ − 5 5 =
7 3 9 0 + 7 5 6 1 2 1 ln ( 3 9 − 5 5 6 3 9 + 5 5 6 )
⟹ I 2 = ∫ − 5 5 y 1 ( x ) d x = 7 5 6 1 2 1 ln ( 3 9 − 5 5 6 3 9 + 5 5 6 ) − 7 1 1 0 ≈ − 6 . 7 5 9 7 0 4 5
⟹ A 1 = 5 5 . 8 1 2 3 4 5 4
For region R 2 :
To find the x points of intersection solve:
3 1 ( 9 0 1 − 9 x 2 + 1 4 ) = 7 2 ( 1 2 1 + 5 6 x 2 + 2 5 ) ⟹
7 9 0 1 − 9 x 2 = 6 1 2 1 + 5 6 x 2 + 5 2 ⟹ 4 4 1 4 9 − 4 4 1 x 2 = 2 0 1 6 x 2 + 6 2 4 1 2 1 + 5 6 x 2
⟹ 3 7 0 8 9 − 2 4 5 7 x 2 = 6 2 4 1 2 1 + 5 6 x 2 ⟹ 6 0 3 6 8 4 9 x 4 − 1 8 2 2 5 5 3 4 6 x 2 + 3 7 0 8 9 2 = 2 1 8 0 5 0 5 6 x 2 + 4 7 1 1 4 4 9 6 ⟹
6 0 3 6 8 4 9 x 4 − 2 0 4 0 6 0 4 0 x 2 + 1 3 2 8 4 7 9 4 2 5 = 0
Let w = x 2 ⟹ w 2 = x 4 ⟹ 6 0 3 6 8 4 9 w 2 − 2 0 4 0 6 0 4 0 w + 1 3 2 8 4 7 9 4 2 5 = 0 ⟹ w 2 − 8 1 2 7 3 8 w + 8 1 1 7 8 2 5 = 0 ⟹ u = 2 5 , u = 8 1 7 1 3 ⟹ x = ± 5 , x = ± 9 7 1 3
x = ± 5 does not satisfy the above equation ⟹ x = ± 9 7 1 3 .
A 2 = ∫ − 9 7 1 3 9 7 1 3 y 1 ∗ ( x ) − y 2 ∗ ( x ) d x .
Let I 1 ∗ = ∫ − 9 7 1 3 9 7 1 3 y 1 ∗ ( x ) d x
Using the antiderivative above for y 1 ( x ) ⟹
I 1 ∗ = − 7 5 6 1 2 1 ( 1 2 1 5 6 x 1 2 1 + 5 6 x 2 + ln ( 1 1 1 2 1 + 5 6 x 2 + 5 6 x ) ) − 7 5 0 ∣ − 9 7 1 3 9 7 1 3 = − 5 6 7 1 3 4 6 7 1 3 − 7 5 6 1 2 1 ln ( 2 2 3 − 2 9 9 8 2 2 2 3 + 2 9 9 8 2 ) ≈ − 7 0 . 0 9 5 1 0 8 3
Let I 2 ∗ = ∫ − 9 7 1 3 9 7 1 3 y 2 ∗ ( x ) d x
Using the antiderivative above for y 2 ( x ) ⟹
I 2 ∗ = − ( 1 8 9 0 1 arcsin ( 9 0 1 3 x ) + 6 x 9 0 1 − 9 x 2 ) − 3 1 4 x ∣ − 9 7 1 3 9 7 1 3
= − 8 1 1 7 0 7 1 3 − 9 9 0 1 arcsin ( 3 9 0 1 7 1 3 ) ≈ − 8 6 . 1 7 9 9 9 0
⟹ A 2 = 1 6 . 0 8 4 8 8 1 8
⟹ A 1 + A 2 = 7 1 . 8 9 7 2 2 7 2