More Conics!

Level 2

(1): Using a x 2 + b x y + c y 2 + d x + e y = 16 ax^2 + bxy + cy^2 + dx + ey = -16 find the conic that passes thru the points ( 5 , 4 ) , ( 0 , 4 ) , ( 5 , 4 ) , ( 3 , 0 ) (5,4), (0,-4), (-5,4), (-3,0) and ( 3 , 0 ) (3,0) .

(2): Find the circle that passes thru the points ( 5 , 4 ) , ( 5 , 4 ) (5,4) ,(-5,4) and ( 10 , 5 ) (-10,-5) .

Find the area of the region(s) bounded by the conic in (1) and the circle in (2) to seven decimal places.


The answer is 71.8972272.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Sep 13, 2018

For the conic:

( 5 , 4 ) : 25 a + 100 b + 16 c + 5 d + 4 e = 288 (5,4): 25a + 100b + 16c + 5d + 4e = -288

( 5 , 4 ) : 25 a 100 b + 16 c 5 d + 4 e = 288 (-5,4): 25a - 100b + 16c - 5d + 4e = -288

( 3 , 0 ) : 9 a + 3 d = 288 (3,0): 9a + 3d = -288

( 3 , 0 ) : 9 a 3 d = 288 (-3,0): 9a - 3d = -288

( 0 , 4 ) : 4 c e = 72 (0,-4): 4c - e = -72

d = b = 0 , a = 32 , c = 7 \implies d = b = 0, a = -32, c = 7 and e = 100 e = 100

32 x 2 + 7 y 2 + 100 y = 288 \implies -32x^2 + 7y^2 + 100y = -288 which is a hyperbola since b 2 4 a c < 0 b^{2} - 4ac < 0 .

Solving for y y we obtain:

y = 2 7 ( ± 121 + 56 x 2 25 ) y = \dfrac{2}{7}(\pm\sqrt{121 + 56x^2} - 25) .

For region R 1 : R_{1}: y 1 ( x ) = 2 7 ( 121 + 56 x 2 25 ) y_{1}(x) = \dfrac{2}{7}(\sqrt{121 + 56x^2} - 25) , where y 4 y \geq -4 .

For region R 2 : R_{2}: y 1 ( x ) = 2 7 ( 121 + 56 x 2 25 ) y^{*}_{1}(x) = \dfrac{2}{7}(-\sqrt{121 + 56x^2} - 25) , where y 12 7 y \leq -\dfrac{12}{7} .

For circle:

(1) ( 5 , 4 ) : 25 10 a + a 2 + 16 8 b + b 2 = r 2 (5,4): 25 - 10a + a^2 + 16 - 8b + b^2 = r^2

(2) ( 5 , 4 ) : 25 + 10 a + a 2 + 16 + 8 b + b 2 = r 2 (5,4): 25 + 10a + a^2 + 16 + 8b + b^2 = r^2

Subtracting (2) from (1) a = 0 \implies a = 0 .

(3) ( 10 , 5 ) : 125 + 10 b + b 2 = r 2 (-10,-5): 125 + 10b + b^2 = r^2

(1) 41 8 b + b 2 = r 2 41 - 8b + b^2 = r^2

Subtracting (1) from (3) b = 14 3 \implies b = -\dfrac{14}{3}

r 2 = 901 9 x 2 + ( y + 14 3 ) 2 = 901 9 \implies r^2 = \dfrac{901}{9} \implies x^2 + (y + \dfrac{14}{3})^2 = \dfrac{901}{9}

Solving for y y we obtain:

y = 1 3 ( ± 901 9 x 2 14 ) y = \dfrac{1}{3}(\pm\sqrt{901 - 9x^2} - 14)

For region R 1 : R_{1}: y 2 ( x ) = 1 3 ( 901 9 x 2 14 ) y_{2}(x) = \dfrac{1}{3}(\sqrt{901 - 9x^2} - 14) above the line y = 14 3 y = -\dfrac{14}{3} .

For region R 2 : R_{2}: y 2 ( x ) = 1 3 ( 901 9 x 2 14 ) y^{*}_{2}(x) = \dfrac{1}{3}(-\sqrt{901 - 9x^2} - 14) below the line y = 14 3 y = -\dfrac{14}{3} .

For region R 1 : R_{1}: A 1 = 5 5 y 2 ( x ) y 1 ( x ) d x A_{1} = \displaystyle\int_{-5}^{5} y_{2}(x) - y_{1}(x) dx .

Let I 1 = 5 5 y 2 ( x ) I_{1} = \displaystyle\int_{-5}^{5} y_{2}(x)

For 1 3 5 5 901 9 x 2 d x \dfrac{1}{3}\displaystyle\int_{-5}^{5} \sqrt{901 - 9x^2} dx :

Let 3 x = 901 sin ( θ ) d x = 901 3 cos ( θ ) d θ 3x = \sqrt{901}\sin(\theta) \implies dx = \dfrac{\sqrt{901}}{3}\cos(\theta) d\theta \implies

5 5 901 9 x 2 d x = 901 9 ( arcsin ( 3 x 901 ) + 3 x 901 9 x 2 901 ) 5 5 = 901 9 arcsin ( 15 901 ) + 130 3 \displaystyle\int_{-5}^{5} \sqrt{901 - 9x^2} dx = \dfrac{901}{9}(\arcsin(\dfrac{3x}{\sqrt{901}}) + \dfrac{3x\sqrt{901 - 9x^2}}{901})|_{-5}^{5} = \dfrac{901}{9}\arcsin(\dfrac{15}{\sqrt{901}}) + \dfrac{130}{3}

I 1 = 5 5 y 2 ( x ) d x = 901 9 arcsin ( 15 901 ) 10 3 49.0526409 \implies I_{1} = \displaystyle\int_{-5}^{5} y^{2}(x) dx = \dfrac{901}{9}\arcsin(\dfrac{15}{\sqrt{901}}) - \dfrac{10}{3} \approx \boxed{49.0526409} .

Let I 2 = 5 5 y 1 ( x ) d x I_{2} = \displaystyle\int_{-5}^{5} y_{1}(x) dx .

For 2 7 5 5 121 + 56 x 2 d x \dfrac{2}{7}\displaystyle\int_{-5}^{5} \sqrt{121 + 56x^2} dx

Let 56 x = 11 tan ( θ ) d x = 11 56 sec 2 ( θ ) \sqrt{56}x = 11\tan(\theta) \implies dx = \dfrac{11}{\sqrt{56}}\sec^2(\theta) \implies

2 7 121 + 56 x 2 d x = 242 7 56 sec 3 ( θ ) d θ \dfrac{2}{7}\displaystyle\int \sqrt{121 + 56x^2} dx = \dfrac{242}{7\sqrt{56}}\displaystyle\int \sec^3(\theta) d\theta .

Let u = sec ( θ ) , d u = sec ( θ ) tan ( θ ) d θ , d v = sec 2 ( θ ) d θ , v = tan ( θ ) u = \sec(\theta), du = \sec(\theta)\tan(\theta) d\theta, dv = \sec^2(\theta) d\theta, v = \tan(\theta) \implies

sec 2 ( θ ) d θ = 1 2 ( sec ( θ ) tan ( θ ) + ln sec ( θ ) + tan ( θ ) ) ) \displaystyle\int \sec^2(\theta) d\theta = \dfrac{1}{2}(\sec(\theta)\tan(\theta) + \ln|\sec(\theta) + \tan(\theta))|)

2 7 5 5 121 + 56 x 2 d x = 121 7 56 ( 56 x 121 + 56 x 2 121 + ln ( 121 + 56 x 2 + 56 x 11 ) ) 5 5 = \implies \dfrac{2}{7}\displaystyle\int_{-5}^{5} \sqrt{121 + 56x^2} dx = \dfrac{121}{7\sqrt{56}}(\dfrac{56x\sqrt{121 + 56x^2}}{121} + \ln(\dfrac{\sqrt{121 + 56x^2} + \sqrt{56}x}{11}))|_{-5}^{5} =

390 7 + 121 7 56 ln ( 39 + 5 56 39 5 56 ) \dfrac{390}{7} + \dfrac{121}{7\sqrt{56}}\ln(\dfrac{39 + 5\sqrt{56}}{39 - 5\sqrt{56}})

I 2 = 5 5 y 1 ( x ) d x = 121 7 56 ln ( 39 + 5 56 39 5 56 ) 110 7 6.7597045 \implies I_{2} = \displaystyle\int_{-5}^{5} y_{1}(x) dx = \dfrac{121}{7\sqrt{56}}\ln(\dfrac{39 + 5\sqrt{56}}{39 - 5\sqrt{56}}) - \dfrac{110}{7} \approx \boxed{-6.7597045}

A 1 = 55.8123454 \implies A_{1} = \boxed{55.8123454}

For region R 2 : R_{2}:

To find the x x points of intersection solve:

1 3 ( 901 9 x 2 + 14 ) = 2 7 ( 121 + 56 x 2 + 25 ) \dfrac{1}{3}(\sqrt{901 - 9x^2} + 14) = \dfrac{2}{7}(\sqrt{121 + 56x^2} + 25) \implies

7 901 9 x 2 = 6 121 + 56 x 2 + 52 44149 441 x 2 = 2016 x 2 + 624 121 + 56 x 2 7\sqrt{901 - 9x^2} = 6\sqrt{121 + 56x^2} + 52 \implies 44149 - 441x^2 = 2016x^2 + 624\sqrt{121 + 56x^2}

37089 2457 x 2 = 624 121 + 56 x 2 6036849 x 4 182255346 x 2 + 3708 9 2 = 21805056 x 2 + 47114496 \implies 37089 - 2457x^2 = 624\sqrt{121 + 56x^2} \implies 6036849x^4 - 182255346x^2 + 37089^2 = 21805056x^2 + 47114496 \implies

6036849 x 4 20406040 x 2 + 1328479425 = 0 6036849x^4 - 20406040x^2 + 1328479425 = 0

Let w = x 2 w 2 = x 4 6036849 w 2 20406040 w + 1328479425 = 0 w = x^2 \implies w^2 = x^4 \implies 6036849w^2 - 20406040w + 1328479425 = 0 \implies w 2 2738 81 w + 17825 81 = 0 u = 25 , u = 713 81 w^2 - \dfrac{2738}{81}w + \dfrac{17825}{81} = 0 \implies u = 25, u = \dfrac{713}{81} \implies x = ± 5 , x = ± 713 9 x = \pm 5, x = \pm \dfrac{\sqrt{713}}{9}

x = ± 5 x = \pm 5 does not satisfy the above equation x = ± 713 9 \implies x = \pm \dfrac{\sqrt{713}}{9} .

A 2 = 713 9 713 9 y 1 ( x ) y 2 ( x ) d x A_{2} = \displaystyle\int_{-\frac{\sqrt{713}}{9}}^{\frac{\sqrt{713}}{9}} y^{*}_{1}(x) - y^{*}_{2}(x) \:\ dx .

Let I 1 = 713 9 713 9 y 1 ( x ) d x I^{*}_{1} = \displaystyle\int_{-\frac{\sqrt{713}}{9}}^{\frac{\sqrt{713}}{9}} y^{*}_{1}(x) dx

Using the antiderivative above for y 1 ( x ) y_{1}(x) \implies

I 1 = 121 7 56 ( 56 x 121 + 56 x 2 121 + ln ( 121 + 56 x 2 + 56 x 11 ) ) 50 7 713 9 713 9 = I^{*}_{1} = -\dfrac{121}{7\sqrt{56}}(\dfrac{56x\sqrt{121 + 56x^2}}{121} + \ln(\dfrac{\sqrt{121 + 56x^2} + \sqrt{56}x}{11})) - \dfrac{50}{7}|_{-\frac{\sqrt{713}}{9}}^{\frac{\sqrt{713}}{9}} = 1346 713 567 121 7 56 ln ( 223 + 2 9982 223 2 9982 ) 70.0951083 -\dfrac{1346\sqrt{713}}{567} - \dfrac{121}{7\sqrt{56}}\ln(\dfrac{223 + 2\sqrt{9982}}{223 - 2\sqrt{9982}}) \approx \boxed{-70.0951083}

Let I 2 = 713 9 713 9 y 2 ( x ) d x I^{*}_{2} = \displaystyle\int_{-\frac{\sqrt{713}}{9}}^{\frac{\sqrt{713}}{9}} y^{*}_{2}(x) dx

Using the antiderivative above for y 2 ( x ) y_{2}(x) \implies

I 2 = ( 901 18 arcsin ( 3 x 901 ) + x 6 901 9 x 2 ) 14 3 x 713 9 713 9 I^{*}_{2} = -(\dfrac{901}{18}\arcsin(\dfrac{3x}{\sqrt{901}}) + \dfrac{x}{6}\sqrt{901 - 9x^2}) - \dfrac{14}{3}x|_{-\frac{\sqrt{713}}{9}}^{\frac{\sqrt{713}}{9}}

= 170 81 713 901 9 arcsin ( 713 3 901 ) = -\dfrac{170}{81}\sqrt{713} - \dfrac{901}{9}\arcsin(\dfrac{\sqrt{713}}{3\sqrt{901}}) \approx 86.179990 \boxed{-86.179990}

A 2 = 16.0848818 \implies A_{2} = \boxed{16.0848818}

A 1 + A 2 = 71.8972272 \implies A_{1} + A_{2} = \boxed{71.8972272}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...