Most craziest limit of cosines

Calculus Level 5

lim x 0 + ( cos ( x ) cos ( 2 x ) cos ( 3 x ) 3 cos ( 2016 x ) 2016 cos ( x ) cos 2 ( 2 x ) cos 3 ( 3 x ) cos 2016 ( 2016 x ) ) cos ( 2016 x ) 2016 cos 2016 ( 2016 x ) \lim_{x\rightarrow 0^{+}} \frac{\left ( \cos\left ( x \right )\sqrt{\cos\left ( 2x \right )}\sqrt[3]{\cos\left ( 3x \right )}\cdots \sqrt[2016]{\cos\left ( 2016x \right )}-\cos\left ( x \right )\cos^{2}\left ( 2x \right )\cos^{3}\left ( 3x \right )\cdots \cos^{2016}\left ( 2016x \right ) \right ) }{\sqrt[2016]{\cos\left ( 2016x \right )}-\cos^{2016}\left ( 2016x \right )}

The limit above has a closed form. Find the value of this closed form.


The answer is 504.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Jan 23, 2017

Considering the first couple of terms in the relevant Taylor series, we have ( cos j x ) 1 j 1 1 2 j x 2 + ( cos j x ) j 1 1 2 j 3 x 2 + \big(\cos jx\big)^{\frac{1}{j}} \; \approx \; 1 - \tfrac12jx^2 + \cdots \hspace{2cm} \big(\cos jx\big)^j \; \approx \; 1 - \tfrac12j^3x^2 + \cdots and hence j = 1 n ( cos j x ) 1 j 1 1 2 j = 1 n j x 2 + = 1 1 4 n ( n + 1 ) x 2 + j = 1 n ( cos j x ) ) j 1 1 2 j = 1 n j 3 x 2 = 1 1 8 n 2 ( n + 1 ) 2 x 2 + \begin{aligned} \prod_{j=1}^n \big(\cos jx\big)^{\frac{1}{j}} & \approx 1 - \tfrac12\sum_{j=1}^n j \,x^2 + \cdots \; = \; 1 - \tfrac14n(n+1)x^2 + \cdots \\ \prod_{j=1}^n \big(\cos jx)\big)^j & \approx 1 - \frac12\sum_{j=1}^n j^3 \,x^2 \; = \; 1 - \tfrac18n^2(n+1)^2 x^2 + \cdots \end{aligned} and hence j = 1 n ( cos j x ) 1 j j = 1 n ( cos j x ) ) j [ 1 8 n 2 ( n + 1 ) 2 1 4 n ( n + 1 ) ] x 2 + = 1 8 n ( n + 1 ) ( n 1 ) ( n + 2 ) x 2 + \prod_{j=1}^n \big(\cos jx\big)^{\frac{1}{j}} - \prod_{j=1}^n \big(\cos jx)\big)^j \; \approx \; \big[\tfrac18n^2(n+1)^2 - \tfrac14n(n+1)\big]x^2 + \cdots \; = \; \tfrac18n(n+1)(n-1)(n+2)x^2 + \cdots while ( cos n x ) 1 n ( cos n x ) n 1 2 ( n 3 n ) x 2 + = 1 2 n ( n 1 ) ( n + 1 ) x 2 + \big(\cos nx)^{\frac{1}{n}} - \big(\cos nx\big)^n \; \approx \; \tfrac12(n^3 - n)x^2 + \cdots \; = \; \tfrac12n(n-1)(n+1)x^2 + \cdots and hence j = 1 n ( cos j x ) 1 j j = 1 n ( cos j x ) ) j ( cos n x ) 1 n ( cos n x ) n 1 4 ( n + 2 ) + \frac{\prod_{j=1}^n \big(\cos jx\big)^{\frac{1}{j}} - \prod_{j=1}^n \big(\cos jx)\big)^j }{\big(\cos nx)^{\frac{1}{n}} - \big(\cos nx\big)^n} \; \approx \; \tfrac14(n+2) + \cdots and hence this ratio tends to 1 2 ( n + 2 ) \tfrac12(n+2) as x 0 + x \to 0+ . With n = 2016 n = 2016 , the answer is 504.5 \boxed{504.5} .

We use Approximation Mclaurin Series we know that mclaurin series for cos ( x ) = n = 0 ( 1 ) n x 2 n ( 2 n ) ! = 1 x 2 2 ! + x 4 4 ! x 6 6 ! + \displaystyle \cos \left( x\right)=\sum_{n=0}^{\infty} (-1)^{n}\frac{x^{2n}}{(2n)!}=1-\frac{x^{2}}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+\cdots

and too this problem we only need the first of 2 term. So cos ( x ) 1 x 2 2 ! = 1 x 2 2 \displaystyle \cos \left( x\right) \approx 1-\frac{x^{2}}{2!}=1-\frac{x^{2}}{2}

then limit become , lim x 0 + ( 1 x 2 2 ) ( 1 4 2 x 2 ) 1 2 ( 1 9 2 x 2 ) 1 3 ( 1 201 6 2 2 x 2 ) 1 2016 ( 1 x 2 2 ) ( 1 4 2 x 2 ) 2 ( 1 9 2 x 2 ) 3 ( 1 2016 2 x 2 ) 2016 ( 1 201 6 2 2 x 2 ) 1 2016 ( 1 2016 2 x 2 ) 2016 \large \displaystyle \lim_{x\rightarrow 0^{+}} \frac{\left( 1-\frac{x^2}{2} \right)\left( 1-\frac{4}{2}x^{2} \right)^{\frac{1}{2}} \left( 1-\frac{9}{2}x^{2} \right)^{\frac{1}{3}}\cdots \left( 1-\frac{2016^{2}}{2}x^{2} \right)^{\frac{1}{2016}} - \left( 1-\frac{x^2}{2} \right)\left( 1-\frac{4}{2}x^{2} \right)^{2} \left( 1-\frac{9}{2}x^{2} \right)^{3}\cdots \left( 1-\frac{2016}{2}x^{2} \right)^{2016} }{\left( 1-\frac{2016^{2}}{2}x^{2} \right)^{\frac{1}{2016}} -\left( 1-\frac{2016}{2}x^{2} \right)^{2016} } After that, we use Approximation Binomial Newton from that we know ( 1 + x ) n = k = 0 n ( n k ) x k \boxed{\displaystyle \left( 1+x \right)^{n}=\sum_{k=0}^{n} \binom{n}{k}x^{k} }

then the approximation is we take first 2 term ( 1 + x ) n ( n 0 ) + ( n 1 ) x 1 = 1 + n x \displaystyle \left( 1+x \right)^{n}\approx \binom{n}{0}+\binom{n}{1}x^{1}=1+nx

Now See a denominator become : ( 1 2016 2 x 2 ) 1 2016 ( 1 2016 2 x 2 ) 2016 = ( 1 2016 2 x 2 ) ( 1 201 6 3 2 x 2 ) = 201 6 3 2016 2 x 2 = 1 2 ( 2016 ) ( 201 6 2 1 ) x 2 \left( 1-\frac{2016}{2}x^{2} \right)^{\frac{1}{2016}} -\left( 1-\frac{2016}{2}x^{2} \right)^{2016} = \left( 1-\frac{2016}{2}x^{2} \right) -\left( 1-\frac{2016^{3}}{2}x^{2} \right) = \frac{2016^{3}-2016}{2}x^{2} = \frac{1}{2}\left( 2016 \right)\left( 2016^{2}-1 \right)x^{2}

so the limit become lim x 0 + ( 1 1 2 x 2 ) ( 1 2 2 x 2 ) ( 1 3 2 x 2 ) ( 1 2016 2 x 2 ) ( 1 1 3 2 x 2 ) ( 1 2 3 2 x 2 ) ( 1 3 3 2 x 2 ) ( 1 201 6 3 2 x 2 ) 1 2 ( 2016 ) ( 201 6 2 1 ) x 2 = lim x 0 + ( 1 1 2 ( 1 + 2 + 3 + + 2016 ) x 2 + ( 1 × 2 + 1 × 3 + + 2015 × 2016 ) x 4 + ) ( 1 1 2 ( 1 3 + 2 3 + 3 3 + + 201 6 3 ) x 2 + ( 1 3 2 3 + 1 3 3 3 + + 201 5 3 201 6 3 ) x 4 + ) 1 2 ( 2016 ) ( 201 6 2 1 ) x 2 = lim x 0 + ( 1 1 2 ( 1 2 ( 2015 ) ( 2016 ) ) x 2 + ( 1 × 2 + 1 × 3 + + 2015 × 2016 ) x 4 + + ( ) x 4032 ) ( 1 1 2 ( ( 1 2 ( 2015 ) ( 2016 ) ) 2 ) x 2 + 1 4 ( 1 3 2 3 + 1 3 3 3 + + 201 5 3 201 6 3 ) x 4 + + ( ) x 4032 ) 1 2 ( 2016 ) ( 2015 ) ( 2017 ) x 2 = lim x 0 + ( 1 2 ( ( 1 2 ( 2015 ) ( 2016 ) ) 2 1 2 ( 2015 ) ( 2016 ) ) x 2 + 1 4 ( 1 × 2 + 1 × 3 + + 2015 × 2016 1 3 2 3 + 1 3 3 3 + + 201 5 3 201 6 3 ) x 4 + + ( ) x 4032 ) 1 2 ( 2016 ) ( 2015 ) ( 2017 ) x 2 lim x 0 + ( 1 2 ( ( 1 2 ( 2015 ) ( 2016 ) ) 2 1 2 ( 2015 ) ( 2016 ) ) x 2 + 1 4 ( 1 × 2 + 1 × 3 + + 2015 × 2016 1 3 2 3 + 1 3 3 3 + + 201 5 3 201 6 3 ) x 4 + + ( ) x 4032 ) 1 2 ( 2016 ) ( 2015 ) ( 2017 ) x 2 \displaystyle \lim_{x\rightarrow 0^{+}} \frac{\left( 1-\frac{1}{2}x^{2} \right)\left( 1-\frac{2}{2}x^{2} \right) \left( 1-\frac{3}{2}x^{2} \right)\cdots \left( 1-\frac{2016}{2}x^{2} \right) - \left( 1-\frac{1^3}{2}x^{2} \right)\left( 1-\frac{2^{3}}{2}x^{2} \right) \left( 1-\frac{3^3}{2}x^{2} \right)\cdots \left( 1-\frac{2016^{3}}{2}x^{2} \right) }{\frac{1}{2}\left( 2016 \right)\left( 2016^{2}-1 \right)x^{2} } \\ \displaystyle = \lim_{x\rightarrow 0^{+}} \frac{ \left( 1- \frac{1}{2}\left( 1+2+3+\cdots+2016 \right)x^{2}+ \left(1\times 2+1\times 3+ \cdots +2015\times 2016 \right)x^{4} +\cdots \right) - \left( 1- \frac{1}{2}\left( 1^{3}+2^{3}+3^{3}+\cdots+2016^{3} \right)x^{2}+ \left( 1^{3}2^{3}+1^{3}3^{3}+ \cdots+2015^{3}2016^{3} \right)x^{4} +\cdots \right) }{\frac{1}{2}\left( 2016 \right)\left( 2016^{2}-1 \right)x^{2} } \\ \displaystyle = \lim_{x\rightarrow 0^{+}} \frac{ \left( 1- \frac{1}{2}\left( \frac{1}{2}(2015)(2016) \right)x^{2}+ \left(1\times 2+1\times 3+ \cdots +2015\times 2016 \right)x^{4} +\cdots+\left( \cdots \right)x^{4032} \right) - \left( 1- \frac{1}{2}\left( \left( \frac{1}{2}\left( 2015 \right)\left( 2016 \right) \right)^{2} \right)x^{2}+ \frac{1}{4}\left( 1^{3}2^{3}+1^{3}3^{3}+ \cdots+2015^{3}2016^{3} \right)x^{4} +\cdots+\left( \cdots \right)x^{4032} \right) }{\frac{1}{2}\left( 2016 \right)\left( 2015 \right)\left( 2017 \right)x^{2} } \\ \displaystyle = \lim_{x\rightarrow 0^{+}} \frac{ \left( \frac{1}{2}\left( \left( \frac{1}{2}\left( 2015 \right)\left( 2016 \right) \right)^{2}-\frac{1}{2}(2015)(2016) \right)x^{2}+ \frac{1}{4}\left(1\times 2+1\times 3+ \cdots +2015\times 2016 - 1^{3}2^{3}+1^{3}3^{3}+ \cdots+2015^{3}2016^{3} \right)x^{4} +\cdots +\left( \cdots \right)x^{4032} \right) }{\frac{1}{2}\left( 2016 \right)\left( 2015 \right)\left( 2017 \right)x^{2} } \\ \displaystyle \lim_{x\rightarrow 0^{+}} \frac{ \left( \frac{1}{2}\left( \left( \frac{1}{2}\left( 2015 \right)\left( 2016 \right) \right)^{2}-\frac{1}{2}(2015)(2016) \right)x^{2}+ \frac{1}{4}\left(1\times 2+1\times 3+ \cdots +2015\times 2016 - 1^{3}2^{3}+1^{3}3^{3}+ \cdots+2015^{3}2016^{3} \right)x^{4} +\cdots +\left( \cdots \right)x^{4032} \right) }{\frac{1}{2}\left( 2016 \right)\left( 2015 \right)\left( 2017 \right)x^{2} }

divide by x 2 x^{2} for denominator and numerator. We have lim x 0 + ( 1 2 ( ( 1 2 ( 2016 ) ( 2017 ) ) 2 1 2 ( 2016 ) ( 2017 ) ) + 1 4 ( 1 × 2 + 1 × 3 + + 2015 × 2016 1 3 2 3 + 1 3 3 3 + + 201 5 3 201 6 3 ) x 2 + + ( ) x 4030 ) 1 2 ( 2016 ) ( 2015 ) ( 2017 ) \displaystyle \lim_{x\rightarrow 0^{+}} \frac{ \left( \frac{1}{2}\left( \left( \frac{1}{2}\left( 2016 \right)\left( 2017 \right) \right)^{2}-\frac{1}{2}(2016)(2017) \right)+ \frac{1}{4}\left(1\times 2+1\times 3+ \cdots +2015\times 2016 - 1^{3}2^{3}+1^{3}3^{3}+ \cdots+2015^{3}2016^{3} \right)x^{2} +\cdots +\left( \cdots \right)x^{4030} \right) }{\frac{1}{2}\left( 2016 \right)\left( 2015 \right)\left( 2017 \right) } subtitute for limit x 0 + x\rightarrow 0^{+} then the answer is

( 1 2 ( ( 1 2 ( 2016 ) ( 2017 ) ) 2 1 2 ( 2016 ) ( 2017 ) ) ) 1 2 ( 2016 ) ( 2015 ) ( 2017 ) = ( 1 2 ( 2016 ) ( 2017 ) ) ( 1 2 ( 2016 ) ( 2017 ) 1 ) ( 2016 ) ( 2015 ) ( 2017 ) = 1 4 2016 × 2017 2 2015 = 1 4 ( 2015 + 1 ) ( 2015 + 2 ) 2 2015 = 1 4 201 5 2 + 3 × 2015 2015 = 2015 + 3 4 = 2018 4 = 504.5 \displaystyle \frac{ \left( \frac{1}{2}\left( \left( \frac{1}{2}\left( 2016 \right)\left( 2017 \right) \right)^{2}-\frac{1}{2}(2016)(2017) \right) \right) }{\frac{1}{2}\left( 2016 \right)\left( 2015 \right)\left( 2017 \right) } \\ = \displaystyle \frac{ \left( \frac{1}{2}\left( 2016 \right)\left( 2017 \right) \right)\left( \frac{1}{2}\left( 2016 \right)\left( 2017 \right)-1 \right)}{\left( 2016 \right)\left( 2015 \right)\left( 2017 \right) } \\ =\displaystyle \frac{1}{4}\frac{2016\times 2017-2}{2015}\\ =\displaystyle \frac{1}{4}\frac{(2015+1)(2015+2)-2}{2015}\\ =\displaystyle \frac{1}{4}\frac{2015^{2}+3\times 2015}{2015}\\ =\displaystyle \frac{2015+3}{4}\\ =\displaystyle \frac{2018}{4}=\boxed{504.5}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...