More Embarrassing Questions

For a statistical study, you need to figure out what proportion of people have a certain private attribute. But the attribute being private, no body really wants to tell you.

So, you devise the following protocol:

  1. You ask the subject to toss a fair coin. They do not show you the result of the toss.
  2. On Heads, they tell you their truthful answer.
  3. On Tails, they toss the coin again and
    • On a Heads, they tell Yes
    • On a second Tails, they tell No

If in a sample of 100 people, 30 people tell you Yes , then what is the expected number of people who really have the private attribute?


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let probability of people to have it = x No of people with it = 100x

Case 1) Head in first toss (P=1/2) Subcase 1) Has it (P=1/2 * x => Number=100*x/2) Subcase 2) Does not have it (don't even care!)

Case 2) Tail in first toss (P=1/2) Subcase 1) Gets Head and tells yes(P=1/4 => Number =100/4=25) Subcase 2) Tails again and tells no ( don't even care!)

Therefore, Total yesses= 30 100*x/2 + 25 = 30 Solve for 100x 100x=10, Which is the number of people with the attribute. One doubt, Agnishom Dada, do you have a private attribute?

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...