More Fibonacci magic

Find the value of

lim n k = 1 n F k 2 k = 1 n 1 F k 2 \displaystyle\lim_{n \to \infty}\dfrac{\displaystyle\sum_{k=1}^{n}F_k^2}{\displaystyle\sum_{k=1}^{n-1}F_k^2}

where F n F_n are the Fibonacci numbers ( 1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 , 1,1,2,3,5,8,13,21,34,\ldots ).


The answer is 2.61803399.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Gabriel Chacón
Mar 23, 2019

Note that

1 2 + 1 2 = 1 2 1 2 + 1 2 + 2 2 = 2 3 1 2 + 1 2 + 2 2 + 3 2 = 3 5 1 2 + 1 2 + 2 2 + 3 2 + 5 2 = 5 8 = k = 1 n F k 2 = F n F n + 1 \begin{aligned} 1^2+1^2 &=1 \cdot 2 \\ 1^2+1^2+2^2 &=2 \cdot 3 \\ 1^2+1^2+2^2+3^2 &=3 \cdot 5 \\ 1^2+1^2+2^2+3^2 +5^2 &=5 \cdot 8 \\ \vdots \quad &= \quad \vdots \\ \displaystyle \sum_{k=1}^{n} F_k^2&= F_n \cdot F_{n+1} \end{aligned}

(There is a nice graphical proof of this identity.)

It is commonly known that lim n F n + 1 F n = φ \displaystyle\lim_{n \to \infty}\dfrac{F_{n+1}}{F_n}=\varphi , the golden ratio ( φ = 1 + 5 2 ) (\varphi=\frac{1+\sqrt{5}}{2}) .

Therefore, lim n k = 1 n F k 2 k = 1 n 1 F k 2 = lim n F n F n + 1 F n 1 F n = φ 2 2.618033988... \displaystyle\lim_{n \to \infty}\dfrac{\displaystyle\sum_{k=1}^{n}F_k^2}{\displaystyle\sum_{k=1}^{n-1}F_k^2}=\displaystyle\lim_{n \to \infty}\dfrac{F_n \cdot F_{n+1}}{F_{n-1} \cdot F_{n}}=\varphi^2\approx2.618033988...

@Gabriel Chacón , we generally use capital letter F n F_n to denotes Fibonacci numbers. Check out this wiki for Fibonacci sequence in Brilliant.org.

Chew-Seong Cheong - 2 years, 2 months ago

@Chew-Seong Cheong, it is true. Fixed!

Gabriel Chacón - 2 years, 2 months ago

Log in to reply

Good, nice that you do that.

Chew-Seong Cheong - 2 years, 2 months ago

Very nice proof by Gabriel. Here is a not really nice approach though (note it is very rough approximation).

We may use the closed form of Fibonacci numbers,

F n = ϕ n ψ n 5 F_n = \frac{\phi^n-\psi^n}{\sqrt{5}}

while ϕ 1.6 \phi \approx 1.6 and ψ 0.6 \psi \approx -0.6 . The trick is to neglect ψ \psi as n n \rightarrow \infty , as ψ < 1 |\psi| <1 .

l i m n k = 1 n F k 2 k = 1 n 1 F k 2 = 1 + F n 2 k = 1 n 1 F k 2 lim_{n \rightarrow \infty} \frac{\sum_{k=1}^{n}F_k^2}{\sum_{k=1}^{n-1}F_k^2}=1+\frac{F_n^2}{\sum_{k=1}^{n-1}F_k^2}

1 + F n 2 k = 1 n 1 F k 2 = 1 + ϕ 2 n 5 1 5 k = 1 n 1 ϕ 2 k ϕ 2 n 1 ϕ 2 n ϕ 2 ϕ 2 1 ϕ 2 1 1+\frac{F_n^2}{\sum_{k=1}^{n-1}F_k^2}=1+\frac{\frac{\phi^{2n}}{5}}{\frac{1}{5}\sum_{k=1}^{n-1}\phi^{2k}} \approx \frac{\frac{\phi^{2n}}{1}}{\frac{\phi^{2n}-\phi^2}{\phi^2-1}} \approx \phi^2-1

Therefore, the final solution is

1 + ( ϕ 2 1 ) = ϕ 2 1. 6 2 1+(\phi^2-1)=\phi^2 \approx 1.6^2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...