More fun in 2014-2015

Algebra Level 3

A= 1 2 1 + 1 2 + 1 3 2 + 2 3 + . . . . + 1 2015 2014 + 2014 2015 \frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+....+\frac{1}{2015\sqrt{2014}+2014\sqrt{2015}} Find A (round to the nearest integer)


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Mateus Gomes
Jan 28, 2016

S = n = 1 2014 1 n n + 1 + ( n + 1 ) n = n = 1 2014 ( n + 1 ) n n n + 1 ( ( n + 1 ) n + n n + 1 ) ( ( n + 1 ) n n n + 1 = n = 1 2014 ( n + 1 ) n n n + 1 n ( n + 1 ) 2 n 2 ( n + 1 ) = n = 1 2014 ( n + 1 ) n n n + 1 n ( n + 1 ) = n = 1 2014 ( 1 n 1 n + 1 ) = n = 1 2014 1 n n = 2 2015 1 n = 1 1 1 2015 = 2015 1 2015 \begin{aligned} S & = \sum_{n=1}^{2014} \frac{1}{n\sqrt{n+1}+(n+1)\sqrt{n}} \\ & = \sum_{n=1}^{2014} \frac{(n+1)\sqrt{n} - n\sqrt{n+1}}{((n+1)\sqrt{n} + n\sqrt{n+1})((n+1)\sqrt{n} - n\sqrt{n+1}} \\ & = \sum_{n=1}^{2014} \frac{(n+1)\sqrt{n} - n\sqrt{n+1}}{n(n+1)^2 - n^2(n+1)} \\ & = \sum_{n=1}^{2014} \frac{(n+1)\sqrt{n} - n\sqrt{n+1}}{n(n+1)} \\ & = \sum_{n=1}^{2014} \left( \frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right) \\ & = \sum_{n=1}^{2014} \frac{1}{\sqrt{n}} - \sum_{n=2}^{2015} \frac{1}{\sqrt{n}} \\ & = \frac{1}{\sqrt{1}} - \frac{1}{\sqrt{2015}} \\ & = \frac{\sqrt{2015} -1} {\sqrt{2015}} \end{aligned}

1 \approx 1

P C
Oct 24, 2015

Another way. We clearly see that every fractions have this form 1 ( n + 1 ) n + n n + 1 \dfrac{1}{(n+1)\sqrt{n}+n\sqrt{n+1}} = ( n + 1 ) n n n + 1 n ( n + 1 ) =\dfrac{(n+1)\sqrt{n}-n\sqrt{n+1}}{n(n+1)} = 1 n 1 n + 1 =\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}} Replace this form into A and we have A = 1 1 2 + 1 2 1 3 + + 1 2014 1 2015 A=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+\dots + \dfrac{1}{\sqrt{2014}}-\dfrac{1}{\sqrt{2015}} A = 1 1 2015 0.977 A=1-\dfrac{1}{\sqrt{2015}}\approx{0.977} Which is approximately 1

That's what I did. +1.

Mehul Arora - 5 years, 1 month ago
Son Nguyen
Oct 23, 2015

A = 1 1 × 2 ( 2 + 1 ) + 1 2 × 3 ( 3 + 2 ) + . . . + 1 2014 × 2015 ( 2014 + 2015 ) A=\frac{1}{\sqrt{1}\times \sqrt{2}(\sqrt{2}+\sqrt{1})}+\frac{1}{\sqrt{2}\times \sqrt{3}(\sqrt{3}+\sqrt{2})}+...+\frac{1}{\sqrt{2014}\times \sqrt{2015}(\sqrt{2014}+\sqrt{2015})}

= 2 1 1 × 2 + 3 2 2 × 3 + . . . + 2015 2014 2014 × 2015 =\frac{\sqrt{2}-\sqrt{1}}{\sqrt{1}\times\sqrt{2} }+\frac{\sqrt{3}-\sqrt{2}}{\sqrt{2}\times \sqrt{3}}+...+\frac{\sqrt{2015}-\sqrt{2014}}{\sqrt{2014}\times \sqrt{2015}} = ( 1 1 1 2 ) + ( 1 2 1 3 ) + . . . + ( 1 2014 1 2015 ) =(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}})+(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}})+...+(\frac{1}{\sqrt{2014}}-\frac{1}{\sqrt{2015}}) = 1 1 1 2015 = 1 1 2015 =\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2015}}=1-\frac{1}{\sqrt{2015}} 1 \approx 1

You might want to say "round to the nearest integer" or something instead of (Approximately)

Brian Wang - 5 years, 7 months ago

Log in to reply

ok tks for your comment.I will repair

Son Nguyen - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...