More fun in 2015 (or not)

S = F 1008 2 + F 1009 2 S=F_{1008}^{2}+F_{1009}^2

Is S S a Fibonacci number F n F_n ? If so, enter n n ; if not, enter 666.


The answer is 2017.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Oct 22, 2015

Using Fabonnaci Q-Matrix as suggested by Otto Bretscher :

( 1 1 1 0 ) k = ( F k + 1 F k F k F k 1 ) ( 1 1 1 0 ) j ( 1 1 1 0 ) k = ( F j + 1 F j F j F j 1 ) ( F k + 1 F k F k F k 1 ) ( 1 1 1 0 ) j + k = ( F j + 1 F k + 1 + F j F k F j + 1 F k + F j F k 1 F j F k + 1 + F j 1 F k F j F k + F j 1 F k 1 ) ( F j + k + 1 F j + k F j + k F j + k 1 ) = ( F j + 1 F k + 1 + F j F k F j + 1 F k + F j F k 1 F j F k + 1 + F j 1 F k F j F k + F j 1 F k 1 ) F j + k 1 = F j F k + F j 1 F k 1 For j = k F 2 k 1 = F k 2 + F k 1 2 Therefore, S = F 2017 = F 1008 2 + F 1009 2 n = 2017 \begin{aligned} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^k & = \begin{pmatrix} F_{k+1} & F_k \\ F_k & F_{k-1} \end{pmatrix} \\ \Rightarrow \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^j \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^k & = \begin{pmatrix} F_{j+1} & F_j \\ F_j & F_{j-1} \end{pmatrix} \begin{pmatrix} F_{k+1} & F_k \\ F_k & F_{k-1} \end{pmatrix} \\ \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{j+k} & = \begin{pmatrix} F_{j+1}F_{k+1} + F_jF_k & F_{j+1}F_k + F_jF_{k-1} \\ F_jF_{k+1} +F_{j-1}F_k & F_jF_k +F_{j-1}F_{k-1} \end{pmatrix} \\ \begin{pmatrix} F_{j+k+1} & F_{j+k} \\ F_{j+k} & \color{#3D99F6}{F_{j+k-1}} \end{pmatrix} & = \begin{pmatrix} F_{j+1}F_{k+1} + F_jF_k & F_{j+1}F_k + F_jF_{k-1} \\ F_jF_{k+1} +F_{j-1}F_k & \color{#3D99F6}{F_jF_k+F_{j-1}F_{k-1}} \end{pmatrix} \\ \Rightarrow \color{#3D99F6}{F_{j+k-1}} & = \color{#3D99F6}{F_jF_k+F_{j-1}F_{k-1}} \\ \text{For } j=k \quad \Rightarrow F_{2k-1} & = F_k^2 + F_{k-1}^2 \\ \text{Therefore, } S = F_{2017} & = F_{1008}^2 + F_{1009}^2 \\ \Rightarrow n & = \boxed{2017} \end{aligned}

Clear, systematic solution, as usual (+1).

Otto Bretscher - 5 years, 7 months ago

wirklich sehr schön

Soner Karaca - 5 years, 7 months ago

Log in to reply

Ich helfe gern.

Chew-Seong Cheong - 5 years, 7 months ago
Kenny Lau
Oct 13, 2015

Statement: F a + b = F a F b + 1 + F a 1 F b F_{a+b}=F_aF_{b+1}+F_{a-1}F_b

Proven using Mathematical induction on b b .

Substitute a 1 = b = n a-1=b=n : F 2 n + 1 = F n F n + F n + 1 F n + 1 F_{2n+1}=F_nF_n+F_{n+1}F_{n+1}

n = 1008 n=1008 : F 2017 = F 1008 2 + F 1009 2 F_{2017}=F_{1008}^2+F_{1009}^2

Good solution (upvote)! I was thinking about it in terms of Fibonacci Q-matrices .

Otto Bretscher - 5 years, 8 months ago

Log in to reply

Alan Tucker says one can prove the above statement by "combinatorical argument". Can you tell me how? I couldn't get that. Probably he's talking about "using the monkey climbing stairs or something analogy" and then using logic to prove this but I don't get it. And yeah, I don't have the solutions.

Kartik Sharma - 5 years, 8 months ago

Log in to reply

Yes, you can easily prove the first of Kenny's statements with a combinatorial argument. Remember that F n + 1 F_{n+1} is the number of ways we can tile a board of length n n with tiles of length one and two. If you place two boards of lengths n n and m m end to end, you have to consider the case of a tile of length two across the fault line... that will give you your identity F n + m + 1 = F n + 1 F m + 1 + F n F m F_{n+m+1}=F_{n+1}F_{m+1}+F_nF_m

As a linear algebra guy, I prefer the matrix approach ;)

Otto Bretscher - 5 years, 8 months ago
Daniel Turizo
Nov 9, 2015

S = F 1008 2 + F 1009 2 S = F_{1008}^2 + F_{1009}^2 S = ( φ 1008 φ 1008 5 ) 2 + ( φ 1009 + φ 1009 5 ) 2 S = \left( {\frac{{\varphi ^{1008} - \varphi ^{ - 1008} }}{{\sqrt 5 }}} \right)^2 + \left( {\frac{{\varphi ^{1009} + \varphi ^{ - 1009} }}{{\sqrt 5 }}} \right)^2 S ( φ 1008 5 ) 2 + ( φ 1009 5 ) 2 S \approx \left( {\frac{{\varphi ^{1008} }}{{\sqrt 5 }}} \right)^2 + \left( {\frac{{\varphi ^{1009} }}{{\sqrt 5 }}} \right)^2 S = φ 2016 + φ 2018 5 S = \frac{{\varphi ^{2016} + \varphi ^{2018} }}{5} S = φ 2016 5 1 + φ 2 5 S = \frac{{\varphi ^{2016} }}{{\sqrt 5 }}\frac{{1 + \varphi ^2 }}{{\sqrt 5 }} S = φ 2017 5 φ 2017 φ 2017 5 = F 2017 S = \frac{{\varphi ^{2017} }}{{\sqrt 5 }} \approx \frac{{\varphi ^{2017} - \varphi ^{ - 2017} }}{{\sqrt 5 }} = F_{2017} n = 2017 n = \boxed{2017}

汶良 林
Oct 26, 2015

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...