More fun in 2015, Part 21

Geometry Level 4

Find k = 0 2014 2 sin ( π 186 + k π 2015 ) \prod_{k=0}^{2014}2\sin\left(\frac{\pi}{186}+\frac{k\pi}{2015}\right)

Bonus question : More generally, what is k = 0 n 1 2 sin ( a + k π n ) \displaystyle\prod_{k=0}^{n-1}2\sin\left(a+\frac{k\pi}{n}\right) ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Otto Bretscher
Oct 15, 2015

Let us prove that k = 0 n 1 2 sin ( a + k π n ) = 2 sin ( n a ) \prod_{k=0}^{n-1}2\sin\left(a+\frac{k\pi}{n}\right)=2\sin(na)

We start with z n 1 = k = 0 n 1 ( z e 2 k π i / n ) z^n-1=\prod_{k=0}^{n-1}(z-e^{-2k\pi i/n}) We plug in z = e 2 a i z=e^{2ai} to find that e 2 n a i 1 = k = 0 n 1 ( e 2 a i e 2 k π i / n ) e^{2nai}-1=\prod_{k=0}^{n-1}(e^{2ai}-e^{-2k\pi i/n}) Now we divide both sides by e n a i e^{nai} and also by i i . On the right hand side, we will multiply numerator and denominator by k = 0 n 1 e k π i / n = e ( n 1 ) π i / 2 = i n 1 \prod_{k=0}^{n-1}e^{k\pi i/n}=e^{(n-1)\pi i/2}=i^{n-1} e n a i e n a i i = k = 0 n 1 1 i ( e a i e k π i / n e a i e k π i / n ) , \frac{e^{nai}-e^{-nai}}{i}=\prod_{k=0}^{n-1}\frac{1}{i}(e^{ai}e^{k\pi i/n}-e^{-ai}e^{-k\pi i/n}), which is the equation we seek to prove.

Brilliant pro(o)f!

Kenny Lau - 5 years, 8 months ago

I can solve this by Chebyshev polynomials as well, but yours is clearly way much better and shorter! Thanks for the solution!

Pi Han Goh - 5 years, 4 months ago
Kenny Lau
Oct 15, 2015

k = 0 2014 2 sin ( π 186 + k π 2015 ) \displaystyle\quad\prod_{k=0}^{2014}2\sin\left(\frac\pi{186}+\frac{k\pi}{2015}\right)

= i 2015 k = 0 2014 ( exp ( i π 186 k i π 2015 ) exp ( i π 186 + k i π 2015 ) ) =\displaystyle i^{2015}\prod_{k=0}^{2014}\left(\exp{\left(-\frac{i\pi}{186}-\frac{ki\pi}{2015}\right)}-\exp{\left(\frac{i\pi}{186}+\frac{ki\pi}{2015}\right)}\right)

= i 2015 exp ( 2015 i π 186 ( 2014 × 2015 / 2 ) × i π 2015 ) k = 0 2014 ( 1 exp ( i π 93 + 2 k i π 2015 ) ) =\displaystyle i^{2015}\exp{\left(-\frac{2015i\pi}{186}-\frac{(2014\times2015/2)\times i\pi}{2015}\right)}\prod_{k=0}^{2014}\left(1-\exp{\left(\frac{i\pi}{93}+\frac{2ki\pi}{2015}\right)}\right)

= exp ( i π 3 ) k = 0 2014 ( 1 exp ( i π 93 + 2 k i π 2015 ) ) =\displaystyle \exp{\left(-\frac{i\pi}3\right)}\prod_{k=0}^{2014}\left(1-\exp{\left(\frac{i\pi}{93}+\frac{2ki\pi}{2015}\right)}\right)


z 2015 = 1 z^{2015}=1 : z = exp 2 k i π 2015 z=\exp{\dfrac{2ki\pi}{2015}} , k k from 0 to 2014.

( exp ( i π 93 ) z ) 2015 = 1 \left(\exp{\left(-\dfrac{i\pi}{93}\right)}z\right)^{2015}=1 : z = exp ( i π 93 + 2 k i π 2015 ) z=\exp{\left(\frac{i\pi}{93}+\frac{2ki\pi}{2015}\right)} , k k from 0 to 2014.

( exp ( i π 93 ) ( 1 z ) ) 2015 = 1 \left(\exp{\left(-\dfrac{i\pi}{93}\right)}(1-z)\right)^{2015}=1 : z = 1 exp ( i π 93 + 2 k i π 2015 ) z=1-\exp{\left(\frac{i\pi}{93}+\frac{2ki\pi}{2015}\right)} , k k from 0 to 2014.

exp ( i π 3 ) ( 1 z ) 2015 = 1 \exp{\left(\dfrac{i\pi}3\right)}(1-z)^{2015}=1

Product of roots by Vieta's Formulas = exp ( i π 3 ) 1 exp ( i π 3 ) = exp ( i π 3 ) \displaystyle\frac{\exp{\left(\frac{i\pi}3\right)}-1}{\exp{\left(\frac{i\pi}3\right)}}=\exp{\left(\frac{i\pi}3\right)}


k = 0 2014 2 sin ( π 186 + k π 2015 ) \displaystyle\quad\prod_{k=0}^{2014}2\sin\left(\frac\pi{186}+\frac{k\pi}{2015}\right)

= exp ( i π 3 ) k = 0 2014 ( 1 exp ( i π 93 + 2 k i π 2015 ) ) =\displaystyle \exp{\left(-\frac{i\pi}3\right)}\prod_{k=0}^{2014}\left(1-\exp{\left(\frac{i\pi}{93}+\frac{2ki\pi}{2015}\right)}\right)

= exp ( i π 3 ) exp ( i π 3 ) =\displaystyle \exp{\left(-\frac{i\pi}3\right)}\exp{\left(\frac{i\pi}3\right)}

= 1 =\displaystyle 1

Looks good( upvote)! Thanks! (I will check the details later.) All the sums, \sum should be products, \prod .

For future reference, can you generalize: What is k = 0 n 1 2 sin ( a + k π n ) \prod_{k=0}^{n-1}2\sin\left(a+\frac{k\pi}{n}\right) ?

Otto Bretscher - 5 years, 8 months ago

Log in to reply

k = 0 n 1 2 sin ( a + k π n ) \displaystyle\quad\prod_{k=0}^{n-1}2\sin\left(a+\frac{k\pi}n\right)

= i n k = 0 n 1 ( exp ( a i k i π n ) exp ( a i + k i π n ) ) =\displaystyle i^n\prod_{k=0}^{n-1}\left(\exp{\left(-ai-\frac{ki\pi}n\right)}-\exp{\left(ai+\frac{ki\pi}n\right)}\right)

= i n exp ( a n i ( n 1 ) i π 2 ) k = 0 n 1 ( 1 exp ( 2 a i + 2 k i π n ) ) =\displaystyle i^n\exp{\left(-ani-\frac{(n-1)i\pi}{2}\right)}\prod_{k=0}^{n-1}\left(1-\exp{\left(2ai+\frac{2ki\pi}n\right)}\right)

= i n exp ( a n i ( n 1 ) i π 2 ) exp ( 2 a i ) n k = 0 n 1 ( exp ( 2 a i ) exp ( 2 k i π n ) ) =\displaystyle i^n\exp{\left(-ani-\frac{(n-1)i\pi}{2}\right)}\exp{\left(2ai\right)}^n\prod_{k=0}^{n-1}\left(\exp{\left(-2ai\right)}-\exp{\left(\frac{2ki\pi}n\right)}\right)

= i n exp ( a n i ( n 1 ) i π 2 ) exp ( 2 a i ) n ( exp ( 2 a i ) n 1 ) =\displaystyle i^n\exp{\left(-ani-\frac{(n-1)i\pi}{2}\right)}\exp{\left(2ai\right)}^n\left(\exp{\left(-2ai\right)}^n-1\right)

= i n exp ( a n i ) ( i ) ( n 1 ) exp ( 2 a i ) n ( exp ( 2 a i ) n 1 ) =\displaystyle i^n\exp{\left(-ani\right)} (-i)^{(n-1)} \exp{\left(2ai\right)}^n\left(\exp{\left(-2ai\right)}^n-1\right)

= i n exp ( a n i ) ( i ) ( n 1 ) exp ( 2 a n i ) ( exp ( 2 a n i ) 1 ) =\displaystyle i^n\exp{\left(-ani\right)} (-i)^{(n-1)} \exp{\left(2ani\right)}\left(\exp{\left(-2ani\right)}-1\right)

= i n ( i ) ( n 1 ) ( exp ( a n i ) exp ( a n i ) ) =\displaystyle i^n (-i)^{(n-1)} \left(\exp{(-ani)}-\exp{(ani)}\right)

= i n ( i ) ( n 1 ) ( 2 i sin ( a n ) ) =\displaystyle i^n (-i)^{(n-1)} (-2i\sin(an))

= 2 sin ( a n ) =\displaystyle 2\sin(an)

This is probably the most beautiful thing I have seen in my life.

Kenny Lau - 5 years, 8 months ago

Log in to reply

I agree that these trigonometric product formulas are quite beautiful and fascinating... but it seems like few people share our passion ;)

Otto Bretscher - 5 years, 8 months ago

Alternatively, for the middle part:

exp ( i π 3 ) k = 0 2014 ( 1 exp ( i π 93 + 2 k i π 2015 ) ) \quad\displaystyle \exp{\left(-\frac{i\pi}3\right)}\prod_{k=0}^{2014}\left(1-\exp{\left(\frac{i\pi}{93}+\frac{2ki\pi}{2015}\right)}\right)

= exp ( 2 i π 3 ) k = 0 2014 ( exp ( i π 93 ) exp 2 k i π 2015 ) =\displaystyle\exp{\left(-\frac{2i\pi}3\right)}\prod_{k=0}^{2014}\left(\exp{\left(-\frac{i\pi}{93}\right)}-\exp{\frac{2ki\pi}{2015}}\right)

= exp ( 2 i π 3 ) ( ( exp ( i π 93 ) ) 2015 1 ) =\displaystyle\exp{\left(-\frac{2i\pi}3\right)}\left(\left(\exp{\left(-\frac{i\pi}{93}\right)}\right)^{2015}-1\right)

= exp ( 2 i π 3 ) ( exp ( i π 3 ) 1 ) =\displaystyle\exp{\left(-\frac{2i\pi}3\right)}\left(\exp{\left(\frac{i\pi}3\right)}-1\right)

= exp ( 2 i π 3 ) exp ( 2 i π 3 ) =\displaystyle\exp{\left(-\frac{2i\pi}3\right)}\exp{\left(\frac{2i\pi}3\right)}

= 1 =1

Kenny Lau - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...