Find k = 0 ∏ 2 0 1 4 2 sin ( 1 8 6 π + 2 0 1 5 k π )
Bonus question : More generally, what is k = 0 ∏ n − 1 2 sin ( a + n k π ) ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Brilliant pro(o)f!
I can solve this by Chebyshev polynomials as well, but yours is clearly way much better and shorter! Thanks for the solution!
k = 0 ∏ 2 0 1 4 2 sin ( 1 8 6 π + 2 0 1 5 k π )
= i 2 0 1 5 k = 0 ∏ 2 0 1 4 ( exp ( − 1 8 6 i π − 2 0 1 5 k i π ) − exp ( 1 8 6 i π + 2 0 1 5 k i π ) )
= i 2 0 1 5 exp ( − 1 8 6 2 0 1 5 i π − 2 0 1 5 ( 2 0 1 4 × 2 0 1 5 / 2 ) × i π ) k = 0 ∏ 2 0 1 4 ( 1 − exp ( 9 3 i π + 2 0 1 5 2 k i π ) )
= exp ( − 3 i π ) k = 0 ∏ 2 0 1 4 ( 1 − exp ( 9 3 i π + 2 0 1 5 2 k i π ) )
z 2 0 1 5 = 1 : z = exp 2 0 1 5 2 k i π , k from 0 to 2014.
( exp ( − 9 3 i π ) z ) 2 0 1 5 = 1 : z = exp ( 9 3 i π + 2 0 1 5 2 k i π ) , k from 0 to 2014.
( exp ( − 9 3 i π ) ( 1 − z ) ) 2 0 1 5 = 1 : z = 1 − exp ( 9 3 i π + 2 0 1 5 2 k i π ) , k from 0 to 2014.
exp ( 3 i π ) ( 1 − z ) 2 0 1 5 = 1
Product of roots by Vieta's Formulas = exp ( 3 i π ) exp ( 3 i π ) − 1 = exp ( 3 i π )
k = 0 ∏ 2 0 1 4 2 sin ( 1 8 6 π + 2 0 1 5 k π )
= exp ( − 3 i π ) k = 0 ∏ 2 0 1 4 ( 1 − exp ( 9 3 i π + 2 0 1 5 2 k i π ) )
= exp ( − 3 i π ) exp ( 3 i π )
= 1
Looks good( upvote)! Thanks! (I will check the details later.) All the sums, ∑ should be products, ∏ .
For future reference, can you generalize: What is ∏ k = 0 n − 1 2 sin ( a + n k π ) ?
Log in to reply
k = 0 ∏ n − 1 2 sin ( a + n k π )
= i n k = 0 ∏ n − 1 ( exp ( − a i − n k i π ) − exp ( a i + n k i π ) )
= i n exp ( − a n i − 2 ( n − 1 ) i π ) k = 0 ∏ n − 1 ( 1 − exp ( 2 a i + n 2 k i π ) )
= i n exp ( − a n i − 2 ( n − 1 ) i π ) exp ( 2 a i ) n k = 0 ∏ n − 1 ( exp ( − 2 a i ) − exp ( n 2 k i π ) )
= i n exp ( − a n i − 2 ( n − 1 ) i π ) exp ( 2 a i ) n ( exp ( − 2 a i ) n − 1 )
= i n exp ( − a n i ) ( − i ) ( n − 1 ) exp ( 2 a i ) n ( exp ( − 2 a i ) n − 1 )
= i n exp ( − a n i ) ( − i ) ( n − 1 ) exp ( 2 a n i ) ( exp ( − 2 a n i ) − 1 )
= i n ( − i ) ( n − 1 ) ( exp ( − a n i ) − exp ( a n i ) )
= i n ( − i ) ( n − 1 ) ( − 2 i sin ( a n ) )
= 2 sin ( a n )
This is probably the most beautiful thing I have seen in my life.
Log in to reply
I agree that these trigonometric product formulas are quite beautiful and fascinating... but it seems like few people share our passion ;)
Alternatively, for the middle part:
exp ( − 3 i π ) k = 0 ∏ 2 0 1 4 ( 1 − exp ( 9 3 i π + 2 0 1 5 2 k i π ) )
= exp ( − 3 2 i π ) k = 0 ∏ 2 0 1 4 ( exp ( − 9 3 i π ) − exp 2 0 1 5 2 k i π )
= exp ( − 3 2 i π ) ( ( exp ( − 9 3 i π ) ) 2 0 1 5 − 1 )
= exp ( − 3 2 i π ) ( exp ( 3 i π ) − 1 )
= exp ( − 3 2 i π ) exp ( 3 2 i π )
= 1
Problem Loading...
Note Loading...
Set Loading...
Let us prove that k = 0 ∏ n − 1 2 sin ( a + n k π ) = 2 sin ( n a )
We start with z n − 1 = k = 0 ∏ n − 1 ( z − e − 2 k π i / n ) We plug in z = e 2 a i to find that e 2 n a i − 1 = k = 0 ∏ n − 1 ( e 2 a i − e − 2 k π i / n ) Now we divide both sides by e n a i and also by i . On the right hand side, we will multiply numerator and denominator by ∏ k = 0 n − 1 e k π i / n = e ( n − 1 ) π i / 2 = i n − 1 i e n a i − e − n a i = k = 0 ∏ n − 1 i 1 ( e a i e k π i / n − e − a i e − k π i / n ) , which is the equation we seek to prove.