More fun in 2016 part 2

Calculus Level 5

lim n 0 1 0 1 ( k = 1 n x k ) 2016 n d x 1 d x 2 d x n = a e b \displaystyle\lim _{ n\rightarrow \infty }{ \displaystyle\int _{ 0 }^{ 1 }{ \cdots \displaystyle\int _{ 0 }^{ 1 }{ \sqrt [ n ]{ \displaystyle \left( \prod _{ k=1 }^{ n }{ { x }_{ k } } \right )^{ 2016 }}d{ x }_{ 1 }d{ x }_{ 2 }\cdots d{ x }_{ { n } } } } }=\dfrac { a }{ { e }^{ b } }

The equation above holds true for positive integers a a and b b . Find a + b a+b .


The answer is 2017.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Akeel Howell
Aug 19, 2017

lim n 0 1 0 1 ( k = 1 n x k ) 2016 n d x 1 d x 2 d x n \displaystyle\lim _{ n\rightarrow \infty }{ \displaystyle\int _{ 0 }^{ 1 }{ \cdots \displaystyle\int _{ 0 }^{ 1 }{ \sqrt [ n ]{ \displaystyle \left( \prod _{ k=1 }^{ n }{ { x }_{ k } } \right )^{ 2016 }}d{ x }_{ 1 }d{ x }_{ 2 }\cdots d{ x }_{ { n } } } } }

Let L = lim n ( k = 1 n x k ) 2016 n \text{ Let } \ L = \displaystyle \lim_{n \to \infty}{\sqrt[n]{ \left( \prod_{k=1}^{n}{x_k} \right )^{2016}}}

ln L = lim n ( 2016 n k = 1 n ln x k ) \implies \ln{L} = \displaystyle \lim_{n \to \infty}{ \left( \dfrac{2016}{n}\sum_{k=1}^{n}{\ln{{x_k}}} \right )} = 2016 0 1 ln ( x n ) d x n \displaystyle = 2016 \int_0^1 {\ln{(x_n)}} dx_n

ln L = 2016 x n ( ln ( x n ) 1 ) 0 1 = 2016 L = e 2016 \implies \ln{L} = 2016x_n(\ln(x_n)-1)|_0^1 = -2016 \\ \therefore L = e^{-2016}

So a + b = 2017 a+b = 2017 .

First Last
Jul 11, 2017

0 1 . . . 0 1 ( k = 1 x k ) 2016 n d x 1 . . . d x n = 0 1 x 1 2016 n d x 1 × . . . × 0 1 x n 2016 n d x n = \displaystyle\int_0^1...\int_0^1\bigg(\prod_{k=1}^\infty x_k\bigg)^\frac{2016}{n}dx_1...dx_n=\int_0^1x_1^\frac{2016}{n}dx_1\times...\times\int_0^1x_n^\frac{2016}{n}dx_n=

1 1 + 2016 n × . . . × 1 1 + 2016 n n times = 1 ( 1 + 2016 n ) n \displaystyle\underbrace{\frac1{1+\frac{2016}{n}}\times...\times\frac1{1+\frac{2016}{n}}}_\text{n times}=\frac1{(1+\frac{2016}{n})^n}

lim n 1 ( 1 + 2016 n ) n = 1 e 2016 \displaystyle\lim_{n\to\infty}\frac1{(1+\frac{2016}{n})^n}=\frac1{e^{2016}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...