More Infinity series!

Algebra Level 2

Find the sum (to infinity) of 1 7 + 2 7 2 + 1 7 3 + 2 7 4 + 1 7 5 + 2 7 6 + \frac{1}{7} + \frac{2}{7^{2}} + \frac{1}{7^{3}} + \frac{2}{7^{4}} + \frac{ 1}{ 7^5} + \frac{2}{ 7^6} + \ldots

10 48 \frac{10}{48} 11 48 \frac{11}{48} 8 48 \frac{8}{48} 9 48 \frac{9}{48}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Mohammad Al Ali
May 19, 2014

Restating the equation,

x = 1 7 1 + 2 7 2 + 1 7 3 + 2 7 4 + . . . x = \frac{1}{7^{1}} + \frac{2}{7^{2}} + \frac{1}{7^{3}} + \frac{2}{7^{4}} + ...

We notice a pattern in the fractions; they can be separated like this:

x = ( 1 7 1 + 1 7 3 + . . . ) + ( 2 7 2 + 2 7 4 + . . . ) x = (\frac{1}{7^{1}} + \frac{1}{7^{3}} + ...) + (\frac{2}{7^{2}} + \frac{2}{7^{4}} + ...)

Let a = 1 7 1 + 1 7 3 + . . . a = \frac{1}{7^{1}} + \frac{1}{7^{3}} + ... and let b = 2 7 2 + 2 7 4 + . . . b = \frac{2}{7^{2}} + \frac{2}{7^{4}} + ...

Hence x = a + b x = a + b

Lets solve for a a , a = 1 7 1 + 1 7 3 + . . . a = \frac{1}{7^{1}} + \frac{1}{7^{3}} + ...

Multiplying both sides by 7 2 7^{2} we obtain,

49 a = 7 + 1 7 1 + 1 7 3 + . . . 49a = 7 + \frac{1}{7^{1}} + \frac{1}{7^{3}} + ...

Notice the RHS is equivalent to 7 + a 7 + a ,

So 49 a = 7 + a 49a = 7 + a

Results in: a = 7 48 \boxed{ a = \frac{7}{48} }

And now, doing the same thing for b we obtain, 49 b = 2 + b 49b = 2 +b

And hence, b = 2 48 \boxed{ b = \frac{2}{48} }

And since x = a + b x = a + b ,

x = 7 48 + 2 48 = 9 48 \boxed{ x = \frac{7}{48} + \frac{2}{48} = \frac{9}{48} }

Note that 9/48 can be simplified to 3/16.

Jon Haussmann - 7 years ago

Log in to reply

yes my answer was also that

Manish Mayank - 7 years ago

Good solution ! I solved it using the infinite geometric series formula ( a/(1-r) ) :)

anoir trabelsi - 7 years ago

Log in to reply

did the same way

Kartik Sharma - 7 years ago

Please check your numerators. In the question, they are 1, 2, 1, 1. If you want it to be repeating as 1, 2, 1, 2, 1, 2, ... then you need to make that clearer.

Calvin Lin Staff - 7 years ago

Yes, i made a misspell in the problem itself, it should be 1,2,1,2 . First time here, couldnt figure out how to edit the problem.

Mohammad Al Ali - 7 years ago

Log in to reply

You can edit the problem (normally) by clicking on the edit button.

Thanks for sharing this problem, hope you're enjoying your experience.

Calvin Lin Staff - 7 years ago

You could also take 1/49 common.....

Akshat Prakash - 7 years ago

Nice solution.

John Albert Reyes - 6 years, 11 months ago
Sajid Hossain
May 28, 2014

L e t , x = 1 7 1 + 2 7 2 + 1 7 3 + 2 7 4 + . . . . . . . . . . . . 49 x = 7 + 2 + 1 7 1 + 2 7 2 + 1 7 3 + 2 7 4 + . . . . . . . . . . . . 49 x = 9 + x x = 9 48 = 3 16 Let,\quad x=\frac { 1 }{ { 7 }^{ 1 } } +\frac { 2 }{ { 7 }^{ 2 } } +\frac { 1 }{ { 7 }^{ 3 } } +\frac { 2 }{ { 7 }^{ 4 } } +............\\ \Rightarrow 49x=7+2+\frac { 1 }{ { 7 }^{ 1 } } +\frac { 2 }{ { 7 }^{ 2 } } +\frac { 1 }{ { 7 }^{ 3 } } +\frac { 2 }{ { 7 }^{ 4 } } +............\\ \Rightarrow 49x=9+x\\ \Rightarrow x=\frac { 9 }{ 48 } =\frac { 3 }{ 16 }

Waow man that's very clever !

Elmokhtar Mohamed Moussa - 6 years, 4 months ago
Mahmoud Ahmed
May 20, 2014

We can deal with the problem as the sum of two geometric sequences

  1. 1 7 + 1 7 3 + 1 7 5 + . . . \frac { 1 }{ 7 } +\frac { 1 }{ 7^{ 3 } } +\frac { 1 }{ 7^{ 5 } } +... where a n = 1 7 { a}_{ n } =\frac { 1 }{ 7 } and r = 1 7 2 r =\frac {1 }{7^2 }

  2. 2 7 2 + 2 7 4 + 2 7 6 + . . . \frac { 2 }{ 7^2 } +\frac { 2 }{ 7^{ 4 } } +\frac { 2 }{ 7^{ 6 } } +... where a n = 2 7 2 { a}_{ n } =\frac { 2 }{ 7^2 } and r = 1 7 2 r =\frac {1 }{7^2 }

Then we can get the sum of both of them using the infinite geometric series formula a n 1 r \frac { { a }_{ n} }{ 1 - r } :

1 7 1 1 7 2 + 2 7 2 1 1 7 2 \frac { \frac {1 }{7 } }{1- \frac { 1 }{ 7^2 } } +\frac { \frac { 2 }{7^2 } }{1 - \frac { 1 }{ 7^2 } } = 3 16 \boxed{\frac{3}{16}} which is the same as 9 48 \boxed{\frac{9}{48}}

Ayush Ram
Jul 27, 2014

This can be expressed as the sum of two infinite geometric series, 1 7 1 + 1 7 2 + 1 7 3 + 1 7 4 \frac{1}{7^1}+\frac{1}{7^2}+\frac{1}{7^3}+\frac{1}{7^4} \cdots and 1 7 2 + 1 7 4 + 1 7 6 + 1 7 8 \frac{1}{7^2}+\frac{1}{7^4}+\frac{1}{7^6}+\frac{1}{7^8} \cdots . The sum of the first one is 1 7 1 1 7 = 1 6 \frac{\frac{1}{7}}{1-\frac{1}{7}}=\frac{1}{6} by the infinite geometric series formula, a 1 r \frac{a}{1-r} . The sum of the second one is 1 49 1 1 49 = 1 48 \frac{\frac{1}{49}}{1-\frac{1}{49}}=\frac{1}{48} . The total sum is 1 6 + 1 48 = 9 48 \frac{1}{6}+\frac{1}{48}=\boxed{\frac{9}{48}} .

Bryan Dellariarte
May 19, 2014

add all the fraction given in the problem

(1/7+1/7^3+1/7^5+.......) +(2/7^2+2/7^4+2/7^6+............) 1/7(1+1/7^2+1/7^4+.........)+2/7^2(1+1/7^2+1/7^3+..........) (1+1/7^2+1/7^3+.........)(1/7+2/7^2) (1/1-(1/49))(1/7)(1+2/7) (49/48)(1/7)(9/7) 9/48

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...