More Integral of Sums.

Calculus Level 4

For x > 1 x > 1 , show that if S 0 ( x ) = n = 1 1 x n 1 \displaystyle S_{0}(x) = \sum_{n = 1}^{\infty} \dfrac{1}{x^{n - 1}} and for ( 1 l k ) (1 \leq l \leq k) , S l ( x ) = n = 1 n l x n , \displaystyle S_{l}(x) = \sum_{n = 1}^{\infty} \dfrac{n^l}{x^n}, then S k + 1 ( x ) = n = 1 n k + 1 x n = l = 0 k 1 ( k l ) S l ( x ) S k l ( x ) + 1 x S k ( x ) S 0 ( x ) S_{k + 1}(x) = \sum_{n = 1}^{\infty} \dfrac{n^{k + 1}}{x^n} = \sum_{l = 0}^{k - 1} \binom kl S_{l}(x) S_{k - l}(x) + \dfrac{1}{x} S_{k}(x) S_{0}(x) Using the above, if m + 1 m + 2 n = 1 n 4 x n d x = m 8 + 4 m 7 + 21 m 6 + 99 m 5 + 231 m 4 + 259 m 3 + 141 m 2 + 44 m + 6 m 4 ( m + 1 ) 4 \int_{m + 1}^{m + 2} \sum_{n = 1}^{\infty} \dfrac{n^4}{x^n} dx = \dfrac{m^8 + 4 m^7 + 21 m^6 + 99 m^5 + 231 m^4 + 259 m^3 + 141 m^2 + 44m + 6}{m^4(m + 1)^4} for x > 1 x > 1 and m > 0 m > 0 , find the value of m m to seven decimal places.


The answer is 0.5819767.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rocco Dalto
Jan 5, 2018

Let x > 1 x > 1 .

To Show: If S 0 ( x ) = n = 1 1 x n 1 S_{0}(x) = \sum_{n = 1}^{\infty} \dfrac{1}{x^{n - 1}} and for ( 1 l k ) (1 \leq l \leq k) S l ( x ) = n = 1 n l x n , S_{l}(x) = \sum_{n = 1}^{\infty} \dfrac{n^l}{x^n}, then

S k + 1 ( x ) = n = 1 n k + 1 x n = S_{k + 1}(x) = \sum_{n = 1}^{\infty} \dfrac{n^{k + 1}}{x^n} = ( l = 0 k 1 ( k l ) S l ( x ) S k l ( x ) ) + 1 x S k ( x ) S 0 ( x ) . (\sum_{l = 0}^{k - 1} \left(\begin{array}{cc} k \\ l \\ \ \end{array}\right) S_{l}(x) S_{k - l}(x)) + \dfrac{1}{x} S_{k}(x) S_{0}(x).

Let x > 1 x > 1 .

S k + 1 = n = 1 n k + 1 x n = j = 1 n = j n k x n = j = 1 n = 0 ( j + n ) k x j + n = S_{k + 1} = \sum_{n = 1}^{\infty} \dfrac{n^{k + 1}}{x^n} = \sum_{j = 1}^{\infty} \sum_{n = j}^{\infty} \dfrac{n^k}{x^n} = \sum_{j = 1}^{\infty} \sum_{n = 0}^{\infty} \dfrac{(j + n)^k}{x^{j + n}} =

j = 1 ( j k x j n = 1 1 x n 1 + ( k 1 ) j k 1 x j n = 1 n x n + ( k 2 ) j k 2 x j n = 1 n 2 x n + . . . + \sum_{j = 1}^{\infty} (\dfrac{j^k}{x^{j}} \sum_{n = 1}^{\infty} \dfrac{1}{x^{n - 1}} + \left(\begin{array}{cc} k \\ 1 \\ \ \end{array}\right) \dfrac{j^{k - 1}}{x^j} \sum_{n = 1}^{\infty} \dfrac{n}{x^n} + \left(\begin{array}{cc} k \\ 2 \\ \ \end{array}\right) \dfrac{j^{k - 2}}{x^j} \sum_{n = 1}^{\infty} \dfrac{n^2}{x^n} + ... + ( k l ) j k l x j n = 1 n l x n + . . . + 1 x j n = 1 n k x n ) \left(\begin{array}{cc} k \\ l \\ \ \end{array}\right) \dfrac{j^{k - l}}{x^j} \sum_{n = 1}^{\infty} \dfrac{n^l}{x^n} + ... + \dfrac{1}{x^j} \sum_{n = 1}^{\infty} \dfrac{n^k}{x^n} ) .

Letting S 0 ( x ) = n = 1 1 x n 1 S_{0}(x) = \sum_{n = 1}^{\infty} \dfrac{1}{x^{n - 1}} and for ( 1 l k ) (1 \leq l \leq k) S l ( x ) = n = 1 n l x n S_{l}(x) = \sum_{n = 1}^{\infty} \dfrac{n^l}{x^n} \implies

S k + 1 = S 0 ( x ) S k ( x ) + ( k 1 ) S 1 ( x ) S k 1 ( x ) + ( k 2 ) S 2 ( x ) S k 2 ( x ) + . . . + ( k l ) S l ( x ) S k l ( x ) = . . . + S_{k + 1} = S_{0}( x) S_{k}(x) + \left(\begin{array}{cc} k \\ 1 \\ \ \end{array}\right) S_{1}(x) S_{k - 1}(x) + \left(\begin{array}{cc} k \\ 2 \\ \ \end{array}\right) S_{2}(x) S_{k - 2}(x) + ... + \left(\begin{array}{cc} k \\ l \\ \ \end{array}\right) S_{l}(x) S_{k - l}(x) = ... +

1 x S k ( x ) S 0 ( x ) = n = 1 n k + 1 x n = \dfrac{1}{x} S_{k}(x) S_{0}(x) = \sum_{n = 1}^{\infty} \dfrac{n^{k + 1}}{x^n} = ( l = 0 k 1 ( k l ) S l ( x ) S k l ( x ) ) + 1 x S k ( x ) S 0 ( x ) (\sum_{l = 0}^{k - 1} \left(\begin{array}{cc} k \\ l \\ \ \end{array}\right) S_{l}(x) S_{k - l}(x)) + \dfrac{1}{x} S_{k}(x) S_{0}(x) .

From the summation it should be clear that S 1 ( x ) = n = 1 n x n 1 = 1 x ( S 0 ( x ) ) 2 S_{1}(x) = \sum_{n = 1}^{\infty} \dfrac{n}{x^{n - 1}} = \dfrac{1}{x} (S_{0}(x))^2 .

Using the above:

Let x > 1 x > 1 .

Clearly the geometric series S 0 = n = 1 1 x n 1 = x x 1 S_{0} = \sum_{n = 1}^{\infty} \dfrac{1}{x^{n - 1}}= \dfrac{x}{x - 1}

For k = 0 : S 1 ( x ) = n = 1 n x n 1 = 1 x ( S 0 ( x ) ) 2 = 1 x ( x x 1 ) 2 = x ( x 1 ) 2 k = 0: S_{1}(x) = \sum_{n = 1}^{\infty} \dfrac{n}{x^{n - 1}} = \dfrac{1}{x} (S_{0}(x))^2 = \dfrac{1}{x}(\dfrac{x}{x - 1})^2 = \dfrac{x}{(x - 1)^2} .

For k = 1 : S 2 ( x ) = n = 1 n 2 x n = S 0 ( x ) S 1 ( x ) + 1 x S 1 ( x ) S 0 ( x ) = x 2 + x ( x 1 ) 3 k = 1: S_{2}(x) = \sum_{n = 1}^{\infty} \dfrac{n^2}{x^{n}} = S_{0}(x) S_{1}(x) +\dfrac{1}{x} S_{1}(x) S_{0}(x) = \dfrac{x^2 + x}{(x - 1)^3}

For k = 2 : S 3 ( x ) = n = 1 n 3 x n = S 0 ( x ) S 2 ( x ) + 2 ( S 1 ( x ) ) 2 + 1 x S 1 ( x ) S 0 ( x ) = x 3 + 4 x 2 + x ( x 1 ) 4 k = 2: S_{3}(x) = \sum_{n = 1}^{\infty} \dfrac{n^3}{x^{n}} = S_{0}(x) S_{2}(x) + 2 (S_{1}(x))^2 + \dfrac{1}{x} S_{1}(x) S_{0}(x) = \dfrac{x^3 + 4x^2 + x}{(x - 1)^4}

For k = 3 : S 4 ( x ) = n = 1 n 4 x n = S 0 ( x ) S 3 ( x ) + 3 S 1 ( x ) S 2 ( x ) + 3 S 2 ( x ) S 1 ( x ) + 1 x S 3 ( x ) S 0 ( x ) = x 4 + 11 x 3 + 11 x 2 + x ( x 1 ) 5 k = 3: S_{4}(x) = \sum_{n = 1}^{\infty} \dfrac{n^4}{x^{n}} = S_{0}(x) S_{3}(x) + 3 S_{1}(x) S_{2}(x) + 3 S_{2}(x) S_{1}(x) + \dfrac{1}{x} S_{3}(x) S_{0}(x) = \dfrac{x^4 + 11x^3 + 11x^2 + x}{(x - 1)^5}

Let u = x 1 d x = d u m + 1 m + 2 S 4 ( x ) d x = m m + 1 u 4 + 15 u 3 + 50 u 2 + 60 u + 24 u 5 d u = u = x - 1 \implies dx = du \implies \int_{m + 1}^{m + 2} S_{4}(x) dx = \int_{m}^{m + 1} \dfrac{u^4 + 15u^3 + 50u^2 + 60u + 24}{u^5} du = m m + 1 1 u + 15 u 2 + 50 u 3 + 60 u 4 + 24 u 5 d u = ( ln ( u ) 15 u 25 u 2 20 u 3 6 u 4 ) m m + 1 = \int_{m}^{m + 1} \dfrac{1}{u} + 15u^{-2} + 50u^{-3} + 60u^{-4} + 24u^{-5} du = (\ln(u) - \dfrac{15}{u} - \dfrac{25}{u^2} - \dfrac{20}{u^3} - \dfrac{6}{u^4})|_{m}^{m + 1} =

ln ( m + 1 m ) + 15 m 6 + 95 m 5 + 230 m 4 + 259 m 3 + 141 m 2 + 44 m + 6 m 4 ( m + 1 ) 4 = \ln(\dfrac{m + 1}{m}) + \dfrac{15m^6 + 95m^5 + 230m^4 + 259m^3 + 141m^2 + 44m + 6}{m^4 (m + 1)^4} = m 8 + 4 m 7 + 21 m 6 + 99 m 5 + 231 m 4 + 259 m 3 + 141 m 2 + 44 m + 6 m 4 ( m + 1 ) 4 = \dfrac{m^8 + 4 m^7 + 21 m^6 + 99 m^5 + 231 m^4 + 259 m^3 + 141 m^2 + 44m + 6}{m^4(m + 1)^4} = m 8 + 4 m 7 + 6 m 6 + 4 m 5 + m 4 + 15 m 6 + 95 m 5 + 230 m 4 + 259 m 3 + 141 m 2 + 44 m + 6 m 4 ( m + 1 ) 4 = \dfrac{m^8 + 4m^7 + 6m^6 + 4m^5 + m^4 + 15m^6 + 95m^5 + 230m^4 + 259m^3 + 141m^2 + 44m + 6}{m^4 (m + 1)^4} = 1 + 15 m 6 + 95 m 5 + 230 m 4 + 259 m 3 + 141 m 2 + 44 m + 6 m 4 ( m + 1 ) 4 1 + \dfrac{15m^6 + 95m^5 + 230m^4 + 259m^3 + 141m^2 + 44m + 6}{m^4 (m + 1)^4} \implies ln ( m + 1 m ) = 1 m + 1 m = e m = 1 e 1 = 0.5819767 \ln(\dfrac{m + 1}{m}) = 1 \implies \dfrac{m + 1}{m} = e \implies m = \dfrac{1}{e - 1} = \boxed{0.5819767} .

Chew-Seong Cheong
Jan 10, 2018

Using a method different from that suggested. Let S 0 ( x ) = n = 0 1 x n \displaystyle S_0(x) = \sum_{\color{#3D99F6} n=0}^\infty \frac 1{x^n} and S k ( x ) = n = 0 n k x n = n = 1 n k x n \displaystyle S_k(x) = \sum_{\color{#3D99F6} n=0}^\infty \frac {n^k}{x^n} = \sum_{\color{#D61F06}n=1}^\infty \frac {n^k}{x^n} for k 1 k \ge 1 for x > 1 x >1 . Then we have:

S k ( x ) = n = 0 n k x n = n = 1 n k x n = n = 0 ( n + 1 ) k x n + 1 = 1 x n = 0 j = 0 k ( k j ) n j x n = 1 x j = 0 k ( k j ) n = 0 n j x n = 1 x j = 0 k ( k j ) S j ( x ) x S k ( x ) = j = 0 k ( k j ) S j ( x ) = S k ( x ) + j = 0 k 1 ( k j ) S j ( x ) S k ( x ) = 1 x 1 j = 0 k 1 ( k j ) S j ( x ) \begin{aligned} S_k(x) & = \sum_{\color{#3D99F6} n=0}^\infty \frac {n^k}{x^n} = \sum_{\color{#D61F06}n=1}^\infty \frac {n^k}{x^n} = \sum_{\color{#3D99F6} n=0}^\infty \frac {(n+1)^k}{x^{n+1}} = \frac 1x \sum_{n=0}^\infty \frac {\sum_{j=0}^k \binom kj n^j}{x^n} = \frac 1x \sum_{j=0}^k \binom kj \sum_{n=0}^\infty \frac {n^j}{x^n} = \frac 1x \sum_{j=0}^k \binom kj S_j(x) \\ \implies x S_k(x) & = \sum_{j=0}^k \binom kj S_j(x) = S_k(x) +\sum_{j=0}^{k-1} \binom kj S_j(x) \\ \implies S_k(x) & = \frac 1{x-1} \sum_{j=0}^{k-1} \binom kj S_j(x) \end{aligned}

Now, we have:

S 0 = n = 0 1 x n = x x 1 S 1 = n = 0 n x n = 1 x 1 × x x 1 = x ( x 1 ) 2 S 2 = n = 0 n 2 x n = 1 x 1 ( x x 1 + 2 x ( x 1 ) 2 ) = x 2 + x ( x 1 ) 3 S 3 = n = 0 n 3 x n = 1 x 1 ( x x 1 + 2 x ( x 1 ) 2 + 3 ( x 2 + x ) ( x 1 ) 3 ) = x 3 + 4 x 2 + x ( x 1 ) 4 S 4 = n = 0 n 4 x n = 1 x 1 ( x x 1 + 4 x ( x 1 ) 2 + 6 ( x 2 + x ) ( x 1 ) 3 + 4 ( x 3 + 4 x 2 + x ) ( x 1 ) 4 ) = x 4 + 11 x 3 + 11 x 2 + x ( x 1 ) 5 \begin{aligned} S_0 & = \sum_{n=0}^\infty \frac 1{x^n} = \frac x{x-1} \\ S_1 & = \sum_{n=0}^\infty \frac n{x^n} = \frac 1{x-1} \times \frac x{x-1} = \frac x{(x-1)^2} \\ S_2 & = \sum_{n=0}^\infty \frac {n^2}{x^n} = \frac 1{x-1} \left(\frac x{x-1} +\frac {2x}{(x-1)^2}\right) = \frac {x^2+x}{(x-1)^3} \\ S_3 & = \sum_{n=0}^\infty \frac {n^3}{x^n} = \frac 1{x-1} \left(\frac x{x-1} +\frac {2x}{(x-1)^2} + \frac {3(x^2+x)}{(x-1)^3} \right) = \frac {x^3+4x^2+x}{(x-1)^4} \\ S_4 & = \sum_{n=0}^\infty \frac {n^4}{x^n} = \frac 1{x-1} \left(\frac x{x-1} +\frac {4x}{(x-1)^2} + \frac {6(x^2+x)}{(x-1)^3} + \frac {4(x^3+4x^2+x)}{(x-1)^4} \right) = \frac {x^4 + 11x^3+11x^2+x}{(x-1)^5} \end{aligned}

Therefore, we have:

I = m + 1 m + 2 n = 0 n 4 x n d x = m + 1 m + 2 x 4 + 11 x 3 + 11 x 2 + x ( x 1 ) 5 d x Let u = x 1 x = u + 1 , d u = d x = m m + 1 u 4 + 15 u 3 + 50 u 2 + 60 u u 5 d u = m m + 1 ( 1 u + 15 u 2 + 50 u 3 + 60 u 4 + 24 u 5 ) d u = ln u 15 u 25 u 2 20 u 3 6 u 4 m m + 1 = ln ( m + 1 m ) 15 ( m + 1 ) 3 + 25 ( m + 1 ) 2 + 20 ( m + 1 ) + 6 ( m + 1 ) 4 + 15 m 3 + 25 m 2 + 20 m + 6 m 4 = ln ( m + 1 m ) + 15 m 6 + 95 m 5 + 230 m 4 + 259 m 3 + 141 x 2 + 44 m + 6 m 4 ( m + 1 ) 4 = ln ( m + 1 m ) + x 8 + 4 m 7 + 21 m 6 + 99 m 5 + 231 m 4 + 259 m 3 + 141 x 2 + 44 m + 6 m 4 ( m + 1 ) 4 x 8 + 4 m 7 + 6 m 6 + 4 m 5 + 1 m 4 m 4 ( m + 1 ) 4 = ln ( m + 1 m ) + x 8 + 4 m 7 + 21 m 6 + 99 m 5 + 231 m 4 + 259 m 3 + 141 x 2 + 44 m + 6 m 4 ( m + 1 ) 4 1 \begin{aligned} I & = \int_{m+1}^{m+2} \sum_{n=0}^\infty \frac {n^4}{x^n} dx \\ & = \int_{m+1}^{m+2} \frac {x^4 + 11x^3+11x^2+x}{(x-1)^5} dx \quad \quad \quad \quad \small \color{#3D99F6} \text{Let }u = x - 1 \implies x = u +1, \ du = dx \\ & = \int_m^{m+1} \frac {u^4+15u^3+50u^2+60u}{u^5} du \\ & = \int_m^{m+1} \left(\frac 1u+\frac {15}{u^2}+\frac {50}{u^3}+\frac {60}{u^4} + \frac {24}{u^5} \right) du \\ & = \ln u - \frac {15}u- \frac {25}{u^2}- \frac {20}{u^3} - \frac 6{u^4}\ \bigg|_m^{m+1} \\ & = \ln \left(\frac {m+1}m\right) - \frac {15(m+1)^3+25(m+1)^2+20(m+1)+6}{(m+1)^4} + \frac {15m^3+25m^2+20m+6}{m^4} \\ & = \ln \left(\frac {m+1}m\right) + \frac {15m^6+95m^5+230m^4+259m^3+141x^2+44m+6}{m^4(m+1)^4} \\ & = \ln \left(\frac {m+1}m\right) + \frac {{\color{#3D99F6}x^8+4m^7+21m^6+99m^5+231m^4}+259m^3+141x^2+44m+6}{m^4(m+1)^4} - \frac {\color{#D61F06}x^8+4m^7+6m^6+4m^5+1m^4}{m^4(m+1)^4} \\ & = {\color{#D61F06}\ln \left(\frac {m+1}m\right)} + \frac {x^8+4m^7+21m^6+99m^5+231m^4+259m^3+141x^2+44m+6}{m^4(m+1)^4} \color{#D61F06}-1 \end{aligned}

This implies that:

ln ( m + 1 m ) = 1 m + 1 m = e m = 1 e 1 0.5819767 \begin{aligned} \ln \left(\frac {m+1}m\right) & = 1 \\ \frac {m+1}m & = e \\ \implies m & = \frac 1{e-1} \approx \boxed{0.5819767}\end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...