More Integration

Calculus Level 4

For any fixed positive integer n n , evaluate

2 n + 1 j = 1 n 1 ( x j ) ( x j 1 ) d x . \int_{2n+1}^\infty \sum_{j=1}^n \dfrac1{(x-j)(x-j-1)} \, dx .

Give your answer to 6 decimal places.


The answer is 0.693147.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rocco Dalto
Sep 6, 2016

L e t Let N N b e be a a f i x e d fixed p o s i t i v e positive i n t e g e r . integer.

F o r For a n y any p o s i t i v e positive i n t e g e r integer J J u s i n g using p a r t i a l partial f r a c t i o n s fractions w e we h a v e : have:

1 ( X J ) ( X J 1 ) = \frac{1}{(X - J) * (X - J -1)} = A X J + B X J 1 \frac{A}{X - J} + \frac{B}{X - J - 1} \implies
A + B = 0 A + B = 0 ( J + 1 ) A + J B = 1 (J + 1) * A + J * B = -1 \implies A = 1 A = -1 a n d and B = 1 B = 1 \implies 1 ( X J ) ( X J 1 ) = \frac{1}{(X - J) * (X - J -1)} = 1 X J 1 1 X J \frac{1}{X - J - 1} - \frac{1}{X - J} \therefore f o r for a n y any p o s i t i v e positive i n t e g e r integer N N w e we h a v e : have:

j = 1 N 1 ( X J ) ( X J 1 ) \sum\limits_{j = 1}^N \frac{1}{(X - J) * (X - J -1)} = = 1 X N 1 1 X 1 \frac{1}{X - N - 1} - \frac{1}{X - 1}

\therefore 2 N + 1 J = 1 N 1 ( X J ) ( X J 1 ) d x \int_{2N + 1}^{\infty} \sum_{J = 1}^{N} \frac{1}{(X - J) * (X - J - 1)} dx = = 2 N + 1 ( 1 X N 1 1 X 1 ) d x \int_{2N + 1}^{\infty} (\frac{1}{X - N - 1} - \frac{1}{X - 1}) dx = =

ln ( X N 1 ) ln ( X 1 ) \ln(X - N - 1) - \ln(X - 1) 2 N + 1 |_{2N + 1}^{\infty} = = ln ( 1 N X 1 ) \ln(1 - \frac{N}{X - 1}) 2 N + 1 |_{2N + 1}^{\infty}

= 0 ln ( 1 2 ) = 0 - \ln(\frac{1}{2}) = ln ( 2 ) \ln(2)

T o To s i x six d e c i m a l decimal p l a c e s places ln ( 2 ) = . 693147. \ln(2) = .693147.

I = 2 n + 1 j = 1 n 1 ( x j ) ( x j 1 ) d x = 2 n + 1 j = 1 n ( 1 x j 1 1 x j ) d x = 2 n + 1 ( 1 x n 1 1 x 1 ) d x = ln ( x n 1 ) ln ( x 1 ) 2 n + 1 = ln x n 1 x 1 2 n + 1 = ln ( 1 n x 1 ) 2 n + 1 = ln 1 ln 1 2 = ln 2 0.693147 \begin{aligned} I & =\int_{2n+1}^\infty \sum_{j=1}^n \frac 1{(x-j)(x-j-1)} dx \\ & =\int_{2n+1}^\infty \sum_{j=1}^n \left(\frac 1{x-j-1}-\frac 1{x-j}\right) dx \\ & =\int_{2n+1}^\infty \left(\frac 1{x-n-1}-\frac 1{x-1}\right) dx \\ & = \ln (x-n-1) -\ln (x-1) \bigg|_{2n+1}^\infty \\ & = \ln \frac {x-n-1} {x-1} \bigg|_{2n+1}^\infty \\ & = \ln \left(1-\frac n{x-1}\right) \bigg|_{2n+1}^\infty \\ &= \ln 1-\ln \frac 1 2 \\ & = \ln 2 \approx \boxed{0.693147} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...