Another Type of Indeterminate Form?

Calculus Level 3

K lim x 9 x 2 1 x x 3 = lim y 9 y 2 1 y y 3 \large -K \lim_{x\to\infty} \dfrac{\sqrt{9x^2-1} - x}{x-3} = \lim_{y\to-\infty} \dfrac{\sqrt{9y^2-1} - y}{y-3}

Given that constant K K satisfy the equation above, find K K .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chung Kevin
Mar 3, 2016

For the limit on the LHS, we divide the numerator and the denominator by x x , to get

lim x ( 9 x 2 1 x x 3 ÷ x x ) = lim x ( 9 1 x 2 1 1 3 x ) = 9 0 1 1 0 = 2 \begin{aligned} \displaystyle \lim_{x\to\infty} \left(\dfrac{\sqrt{9x^2-1} - x}{x-3} \div \dfrac xx \right) &=& \displaystyle \lim_{x\to\infty} \left(\dfrac{\sqrt{9-\dfrac1{x^2}} - 1}{1-\dfrac3x} \right) \\ &=& \displaystyle \dfrac{\sqrt{9-0} - 1}{1 - 0} = 2 \end{aligned}

However, it gets trickier if x x\to -\infty , because we're dealing with radical functions, let's try to apply a substitution of y = x y = -x , so that we're only dealing with positive numbers. Thus when x x\to -\infty , y y \to\infty , and so the limit becomes lim y 9 y 2 1 + y y 3 \displaystyle \lim_{y\to\infty} \dfrac{\sqrt{9y^2-1} +y}{-y-3}

Likewise, we divide the numerator and the denominator by y y , to get

lim y ( 9 y 2 1 + y y 3 ÷ y y ) = lim y ( 9 1 y 2 + 1 1 3 y ) = 9 0 + 1 1 0 = 4 \begin{aligned} \displaystyle \lim_{y\to\infty} \left(\dfrac{\sqrt{9y^2-1} +y}{-y-3} \div \dfrac yy \right) &=& \displaystyle \lim_{y\to\infty} \left(\dfrac{\sqrt{9-\dfrac1{y^2}} +1}{-1-\dfrac3y}\right) \\ &=& \dfrac{\sqrt{9-0} + 1}{-1 - 0} = -4 \end{aligned}

Putting this all together, we have ( K ) ( 2 ) = 4 K = 2 (-K )( -2 )= -4 \Rightarrow K = \boxed2 .

The first limit is equal to 2, not -2.

Mateo Matijasevick - 5 years, 1 month ago

Log in to reply

Thank you for spotting my mistake. I've made the necessary changes.

Chung Kevin - 5 years, 1 month ago
Shaun Leong
Feb 27, 2016

Note that lim x 9 x 2 + 1 x x 3 = lim x 9 x 2 + 1 + x x 3 \lim_{x\rightarrow-\infty}\frac{\sqrt{9x^2+1}-x}{x-3}=\lim_{x\rightarrow\infty}\frac{\sqrt{9x^2+1}+x}{-x-3} Hence K lim x 9 x 2 + 1 x x 3 = lim x 9 x 2 + 1 + x x 3 -K\lim_{x\rightarrow\infty}\frac{\sqrt{9x^2+1}-x}{x-3}=\lim_{x\rightarrow\infty}\frac{\sqrt{9x^2+1}+x}{-x-3} K = lim x 9 x 2 + 1 + x x 3 lim x 9 x 2 + 1 x x 3 K=-\dfrac{\lim_{x\rightarrow\infty}\frac{\sqrt{9x^2+1}+x}{-x-3}}{\lim_{x\rightarrow\infty}\frac{\sqrt{9x^2+1}-x}{x-3}} = lim x 9 x 2 + 1 + x 9 x 2 + 1 x lim x x 3 x + 3 =\lim_{x\rightarrow\infty}\frac{\sqrt{9x^2+1}+x}{\sqrt{9x^2+1}-x} \cdot \lim_{x\rightarrow\infty}\frac{x-3}{x+3} = lim x 9 + 1 x 2 + 1 9 + 1 x 2 1 lim x 1 3 x 1 + 3 x =\lim_{x\rightarrow\infty}\frac{\sqrt{9+\frac{1}{x^2}}+1}{\sqrt{9+\frac{1}{x^2}}-1} \cdot \lim_{x\rightarrow\infty}\frac{1-\frac{3}{x}}{1+\frac{3}{x}} = 3 + 1 3 1 1 =\dfrac{3+1}{3-1} \cdot 1 K = 2 K=\boxed{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...