Infinite Radicals!!

Calculus Level 3

If 2 6 1 x + x + x + . . . d x = a + ln ( a b ) \displaystyle\int_{2}^{6} \dfrac{1}{\sqrt{x + \sqrt{x + \sqrt{x + ... }}}} \ dx = a + \ln \left(\frac{a}{b}\right) , where a a and b b are coprime positive integers, find a + b a + b .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 27, 2019

Let u = x + x + x + u= \sqrt{x+\sqrt{x+\sqrt{x+\sqrt{\cdots}}}} . Then

u = x + u u 2 = x + u u 2 u = x ( 2 u 1 ) d u = d x \begin{aligned} u & = \sqrt{x+u} \\ u^2 & = x + u \\ u^2 - u & = x \\ \implies (2u-1) \ du & = dx \end{aligned}

And when { x = 6 u 2 u 6 = ( u 3 ) ( u + 2 ) = 0 u = 3 since u > 0 x = 2 u 2 u 2 = ( u 2 ) ( u + 1 ) = 0 u = 2 since u > 0 \begin{cases} x = 6 & \implies u^2 - u - 6 = (u-3)(u+2) = 0 & \implies u = 3 \text{ since }u> 0 \\ x = 2 & \implies u^2 - u - 2 = (u-2)(u+1) = 0 & \implies u = 2 \text{ since }u> 0 \end{cases}

Now we have

I = 2 6 1 x + x + x + d x = 2 3 2 u 1 u d u = 2 3 ( 2 1 u ) d u = 2 u ln u 2 3 = 2 + ln ( 2 3 ) \begin{aligned} I & = \int_2^6 \frac 1{\sqrt{x+\sqrt{x+\sqrt{x+\sqrt{\cdots}}}}} dx \\ & = \int_2^3 \frac {2u-1}u du \\ & = \int_2^3 \left(2 - \frac 1u\right) du \\ & = 2u - \ln u \ \big|_2^3 \\ & = 2 + \ln \left(\frac 23\right) \end{aligned}

Therefore a + b = 2 + 3 = 5 a+b = 2+3 = \boxed 5 .

Rocco Dalto
Dec 23, 2019

Let y = x + x + x + . . . y 2 x = x + x + x + . . . = y y = \sqrt{x + \sqrt{x + \sqrt{x + ... }}} \implies y^2 - x = \sqrt{x + \sqrt{x + \sqrt{x + ... }}} = y

y 2 y x = 0 y = 1 + 1 + 4 x 2 \implies y^2 - y - x = 0 \implies y = \dfrac{1 + \sqrt{1 + 4x}}{2} dropping the negative root for

2 x 6 2 \leq x \leq 6 .

Let w ( x ) = 1 y ( x ) w(x) = \dfrac{1}{y(x)}

2 6 w ( x ) d x = \implies \displaystyle\int_{2}^{6} w(x) dx = 2 2 6 ( d x 1 + 4 x + 1 ) 2\displaystyle\int_{2}^{6} (\dfrac{dx}{1 + \sqrt{4x + 1}})

Let u 2 = 4 x + 1 d x = 1 2 u d u 2 2 6 ( d x 1 + 4 x + 1 ) = u^2 = 4x + 1 \implies dx = \dfrac{1}{2}u du \implies 2\displaystyle\int_{2}^{6} (\dfrac{dx}{1 + \sqrt{4x + 1}}) =

3 5 u u + 1 d u = 3 5 ( 1 1 u + 1 ) d u = \displaystyle\int_{3}^{5} \dfrac{u}{u + 1} \:\ du = \displaystyle\int_{3}^{5} (1 - \dfrac{1}{u + 1}) \:\ du =

u ln ( u + 1 ) 3 5 = 2 + ln ( 2 3 ) = a + ln ( a b ) a + b = 5 u - \ln(u + 1)|_{3}^{5} = 2 + \ln(\dfrac{2}{3}) = a + \ln(\dfrac{a}{b}) \implies a + b = \boxed{5} .

Note:

Letting z 1 = x z_{1} = \sqrt{x} and z n + 1 = x + z n z_{n + 1} = \sqrt{x + z_{n}} and assuming lim n z n \lim_{n \rightarrow \infty} z_{n} exists

\implies

y = lim n z n = lim n z n + 1 = lim n x + z n y = \lim_{n \rightarrow \infty} z_{n} = \lim_{n \rightarrow \infty} z_{n + 1} = \lim_{n \rightarrow \infty} \sqrt{x + z_{n}}

and lim n S n = L lim n ( S n ) 2 = L 2 \lim_{n \rightarrow \infty} S_{n} = L \implies \lim_{n \rightarrow \infty} (S_{n})^2 = L^2

y 2 = lim n x + z n = x + lim n z n = x + y \implies y^2 = \lim_{n \rightarrow \infty} x + z_{n} = x + \lim_{n \rightarrow \infty} z_{n} = x + y \implies

y 2 y x = 0 y = 1 + 1 + 4 x 2 \implies y^2 - y - x = 0 \implies y = \dfrac{1 + \sqrt{1 + 4x}}{2} \:\ same as above from here.

You should use \left( \right) for larger brackets.

Chew-Seong Cheong - 1 year, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...