If ∫ 2 6 x + x + x + . . . 1 d x = a + ln ( b a ) , where a and b are coprime positive integers, find a + b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let y = x + x + x + . . . ⟹ y 2 − x = x + x + x + . . . = y
⟹ y 2 − y − x = 0 ⟹ y = 2 1 + 1 + 4 x dropping the negative root for
2 ≤ x ≤ 6 .
Let w ( x ) = y ( x ) 1
⟹ ∫ 2 6 w ( x ) d x = 2 ∫ 2 6 ( 1 + 4 x + 1 d x )
Let u 2 = 4 x + 1 ⟹ d x = 2 1 u d u ⟹ 2 ∫ 2 6 ( 1 + 4 x + 1 d x ) =
∫ 3 5 u + 1 u d u = ∫ 3 5 ( 1 − u + 1 1 ) d u =
u − ln ( u + 1 ) ∣ 3 5 = 2 + ln ( 3 2 ) = a + ln ( b a ) ⟹ a + b = 5 .
Note:
Letting z 1 = x and z n + 1 = x + z n and assuming lim n → ∞ z n exists
⟹
y = lim n → ∞ z n = lim n → ∞ z n + 1 = lim n → ∞ x + z n
and lim n → ∞ S n = L ⟹ lim n → ∞ ( S n ) 2 = L 2
⟹ y 2 = lim n → ∞ x + z n = x + lim n → ∞ z n = x + y ⟹
⟹ y 2 − y − x = 0 ⟹ y = 2 1 + 1 + 4 x same as above from here.
You should use \left( \right) for larger brackets.
Problem Loading...
Note Loading...
Set Loading...
Let u = x + x + x + ⋯ . Then
u u 2 u 2 − u ⟹ ( 2 u − 1 ) d u = x + u = x + u = x = d x
And when { x = 6 x = 2 ⟹ u 2 − u − 6 = ( u − 3 ) ( u + 2 ) = 0 ⟹ u 2 − u − 2 = ( u − 2 ) ( u + 1 ) = 0 ⟹ u = 3 since u > 0 ⟹ u = 2 since u > 0
Now we have
I = ∫ 2 6 x + x + x + ⋯ 1 d x = ∫ 2 3 u 2 u − 1 d u = ∫ 2 3 ( 2 − u 1 ) d u = 2 u − ln u ∣ ∣ 2 3 = 2 + ln ( 3 2 )
Therefore a + b = 2 + 3 = 5 .